{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/scripts\/pipeline\/generate.py",
"offset": 570,
"limit": 150
}
}
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/scripts\/pipeline\/generate.py",
"content": "def generate_content(order_id, model=\"anthropic\", collection=\"documents\", context_limit=5):\n \"\"\"\n Main content generation function.\n\n Args:\n order_id: Content order ID\n model: 'anthropic' or 'ollama'\n collection: Qdrant collection to search\n context_limit: Number of context chunks\n\n Returns:\n dict with version_id, content, sources\n \"\"\"\n db.connect()\n\n try:\n # Load order\n order = get_order(order_id)\n if not order:\n return {\"error\": f\"Order {order_id} not found\"}\n\n # Update status\n update_order_status(order_id, \"generating\")\n\n # Get RAG context\n context = get_rag_context(order[\"briefing\"], collection, context_limit)\n\n # Build profile\/contract\/structure\n profile = None\n if order.get(\"profile_config\"):\n config = (\n json.loads(order[\"profile_config\"])\n if isinstance(order[\"profile_config\"], str)\n else order[\"profile_config\"]\n )\n profile = {\"name\": order[\"profile_name\"], \"config\": config}\n\n contract = None\n if order.get(\"contract_config\"):\n config = (\n json.loads(order[\"contract_config\"])\n if isinstance(order[\"contract_config\"], str)\n else order[\"contract_config\"]\n )\n contract = {\"name\": order[\"contract_name\"], \"config\": config}\n\n structure = None\n output_format = \"markdown\" # Default\n if order.get(\"structure_config\"):\n config = (\n json.loads(order[\"structure_config\"])\n if isinstance(order[\"structure_config\"], str)\n else order[\"structure_config\"]\n )\n structure = {\"name\": order[\"structure_name\"], \"config\": config}\n # Determine output format from structure\n ausgabe = config.get(\"ausgabe\", {})\n output_format = ausgabe.get(\"format\", \"markdown\")\n\n # Build prompt\n prompt = build_generation_prompt(order[\"briefing\"], context, profile, contract, structure)\n\n # Generate content\n content = call_llm(prompt, model, client_name=\"content-studio-generate\")\n\n # Get current version number\n cursor = db.execute(\n \"SELECT MAX(version_number) as max_v FROM content_versions WHERE order_id = %s\", (order_id,)\n )\n result = cursor.fetchone()\n cursor.close()\n version_number = (result[\"max_v\"] or 0) + 1\n\n # Save version with correct format\n version_id = save_version(order_id, content, version_number, output_format)\n\n # Save sources\n save_sources(order_id, context)\n\n # Update status\n update_order_status(order_id, \"critique\")\n\n return {\n \"success\": True,\n \"order_id\": order_id,\n \"version_id\": version_id,\n \"version_number\": version_number,\n \"content\": content,\n \"sources\": [{\"source\": c[\"source\"], \"score\": c[\"score\"]} for c in context],\n }\n\n except Exception as e:\n update_order_status(order_id, \"draft\")\n return {\"error\": str(e)}\n finally:\n db.disconnect()\n\n\ndef get_critic(critic_id):\n \"\"\"Load critic from database.\"\"\"\n cursor = db.execute(\n \"\"\"SELECT c.*, p.content as prompt_content\n FROM critics c\n LEFT JOIN prompts p ON c.prompt_id = p.id\n WHERE c.id = %s AND c.is_active = 1\"\"\",\n (critic_id,),\n )\n result = cursor.fetchone()\n cursor.close()\n return result\n\n\ndef run_critic(content, critic_id, model=\"anthropic\"):\n \"\"\"\n Run a single critic on content.\n\n Returns:\n dict with feedback and rating\n \"\"\"\n db.connect()\n\n try:\n critic = get_critic(critic_id)\n if not critic:\n return {\"error\": f\"Critic {critic_id} not found\"}\n\n fokus = json.loads(critic[\"fokus\"]) if isinstance(critic[\"fokus\"], str) else critic[\"fokus\"]\n fokus_str = \", \".join(fokus)\n\n # Load prompt from database (via critic.prompt_id or fallback to generic)\n prompt_template = critic.get(\"prompt_content\")\n if not prompt_template:\n prompt_template = get_prompt(\"critic-generic\")\n if not prompt_template:\n # Ultimate fallback - should never happen if DB is properly set up\n prompt_template = \"\"\"Du bist ein kritischer Lektor mit dem Fokus auf: {fokus}\n\nAnalysiere den folgenden Text und gib strukturiertes Feedback:\n\n## Text:\n{content}\n\n## Deine Aufgabe:\n1. Prüfe den Text auf die Aspekte: {fokus}\n2. Identifiziere konkrete Verbesserungspunkte\n3. Bewerte die Qualität (1-10)\n\nAntworte im JSON-Format:\n{{\n \"rating\": 8,",
"numLines": 150,
"startLine": 570,
"totalLines": 987
}
}
}