Protokoll #8498

ID8498
Zeitstempel2025-12-23 09:46:19.794958
Clientroot
IP145.224.96.190
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens1,283 (Input: 70, Output: 1,213)
Dauer157 ms
Request-Zeit2025-12-23 09:46:19.794958
Response-Zeit2025-12-23 09:46:19.952025

Request

{
    "event": "PreToolUse",
    "tool_name": "Bash",
    "tool_input": {
        "command": "head -60 src\/Controller\/ChatController.php src\/UseCases\/Chat\/SendMessageUseCase.php src\/Infrastructure\/AI\/ChatService.php 2>\/dev\/null | head -150",
        "description": "Analyze dependency patterns in real files"
    }
}

Response

{
    "tool_response": {
        "stdout": "==> src\/Controller\/ChatController.php <==\n<?php\n\ndeclare(strict_types=1);\n\nnamespace Controller;\n\n\/\/ @responsibility: HTTP-Endpunkte für KI-Chat (Sessions, Nachrichten, Export)\n\nuse Framework\\Controller;\nuse Infrastructure\\AI\\ModelConfig;\nuse Infrastructure\\Formatting\\ChatMessageFormatter;\nuse UseCases\\Chat\\ExportChatSessionUseCase;\nuse UseCases\\Chat\\ManageChatSessionsUseCase;\nuse UseCases\\Chat\\SendChatMessageUseCase;\n\nclass ChatController extends Controller\n{\n    private ManageChatSessionsUseCase $sessionsUseCase;\n    private SendChatMessageUseCase $messageUseCase;\n    private ChatMessageFormatter $formatter;\n    private ExportChatSessionUseCase $exportUseCase;\n\n    public function __construct(\n        ManageChatSessionsUseCase $sessionsUseCase,\n        SendChatMessageUseCase $messageUseCase,\n        ChatMessageFormatter $formatter,\n        ExportChatSessionUseCase $exportUseCase\n    ) {\n        $this->sessionsUseCase = $sessionsUseCase;\n        $this->messageUseCase = $messageUseCase;\n        $this->formatter = $formatter;\n        $this->exportUseCase = $exportUseCase;\n    }\n\n    public function index(): void\n    {\n        $uuid = $this->sessionsUseCase->createSession();\n        header('Location: \/chat\/' . $uuid);\n        exit;\n    }\n\n    public function show(string $uuid): void\n    {\n        $session = $this->sessionsUseCase->getSession($uuid);\n\n        if ($session === null) {\n            header('Location: \/chat');\n            exit;\n        }\n\n        $this->view('chat.index', [\n            'title' => $session['title'] ?? 'KI-Chat',\n            'session' => $session,\n            'messages' => $this->sessionsUseCase->getMessages($session['id']),\n            'sessions' => $this->sessionsUseCase->getAllSessions(),\n            'authorProfiles' => $this->sessionsUseCase->getAuthorProfiles(),\n            'systemPrompts' => $this->sessionsUseCase->getSystemPrompts(),\n            'outputStructures' => $this->sessionsUseCase->getOutputStructures(),\n            'collections' => $this->sessionsUseCase->getAvailableCollections(),\n            'models' => ModelConfig::getAll(),\n\n==> src\/Infrastructure\/AI\/ChatService.php <==\n<?php\n\ndeclare(strict_types=1);\n\nnamespace Infrastructure\\AI;\n\n\/\/ @responsibility: RAG-Pipeline für KI-Chat (Embedding, Suche, Antwort-Generierung)\n\nuse RuntimeException;\n\nfinal readonly class ChatService\n{\n    \/**\n     * Constructs a new ChatService instance.\n     *\n     * @param OllamaService $ollama Ollama service for embeddings and optional LLM\n     * @param QdrantService $qdrant Qdrant service for vector search\n     * @param ClaudeService $claude Claude service for high-quality LLM responses\n     *\/\n    public function __construct(\n        private OllamaService $ollama,\n        private QdrantService $qdrant,\n        private ClaudeService $claude\n    ) {\n    }\n\n    \/**\n     * Executes a complete RAG chat pipeline.\n     *\n     * Performs the following steps:\n     * 1. Generates an embedding vector for the question (if collections selected)\n     * 2. Searches for similar documents in the vector database(s)\n     * 3. Builds context from the most relevant chunks\n     * 4. Generates an answer using the specified LLM model\n     * 5. Extracts source information\n     * 6. Assembles a structured response\n     *\n     * If no collections are selected, steps 1-3 and 5 are skipped (no RAG).\n     *\n     * @param string        $question           The user's question to answer\n     * @param string        $model              The LLM model (claude-* or ollama:*)\n     * @param array<string> $collections        Qdrant collections to search (empty = no RAG)\n     * @param int           $limit              Maximum number of document chunks to retrieve (default: 5)\n     * @param string|null   $stylePrompt        Optional style prompt from author profile\n     * @param string|null   $customSystemPrompt Optional custom system prompt (replaces default if set)\n     * @param float         $temperature        Sampling temperature 0.0-1.0 (default: 0.7)\n     * @param int           $maxTokens          Maximum tokens in response (default: 4096)\n     *\n     * @return array{\n     *     question: string,\n     *     answer: string,\n     *     sources: array<int, array{title: string, score: float, content?: string}>,\n     *     model: string,\n     *     usage?: array{input_tokens: int, output_tokens: int},\n     *     chunks_used: int\n     * } Complete chat response with answer, sources, and metadata\n     *\n     * @throws RuntimeException If embedding generation fails\n     * @throws RuntimeException If vector search fails\n     * @throws RuntimeException If LLM request fails",
        "stderr": "",
        "interrupted": false,
        "isImage": false
    }
}
← Vorheriger Zur Liste Nächster →