Protokoll #4762

ID4762
Zeitstempel2025-12-22 14:51:52.301863
Clientroot
IP145.224.96.190
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens925 (Input: 30, Output: 895)
Dauer85 ms
Request-Zeit2025-12-22 14:51:52.301863
Response-Zeit2025-12-22 14:51:52.386680

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/opt\/scripts\/pipeline\/vision.py",
        "limit": 120
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/opt\/scripts\/pipeline\/vision.py",
            "content": "#!\/usr\/bin\/env python3\n\"\"\"\nVision analysis module for KI-System Pipeline.\nExtracts PDF pages as images and analyzes them with vision models.\n\nUsage:\n    python vision.py <pdf_path>          # Analyze all pages\n    python vision.py <pdf_path> --page 1 # Analyze specific page\n\"\"\"\n\nimport base64\nimport os\nimport sys\nfrom pathlib import Path\n\nimport requests\n\nfrom config import OLLAMA_HOST\nfrom db import db\n\n# Default vision model (can be overridden by pipeline config)\nDEFAULT_VISION_MODEL = \"minicpm-v:latest\"\n\n# Image settings\nIMAGE_DPI = 150  # Balance between quality and size\nIMAGE_FORMAT = \"png\"\nMAX_IMAGE_SIZE_MB = 10\n\n\ndef pdf_to_images(file_path, dpi=IMAGE_DPI):\n    \"\"\"\n    Convert PDF pages to images.\n\n    Args:\n        file_path: Path to PDF file\n        dpi: Resolution for image extraction\n\n    Returns:\n        List of dicts with page_number, image_bytes, width, height\n    \"\"\"\n    import fitz  # PyMuPDF\n\n    doc = fitz.open(file_path)\n    pages = []\n\n    for page_num in range(len(doc)):\n        page = doc[page_num]\n\n        # Render page to image\n        mat = fitz.Matrix(dpi \/ 72, dpi \/ 72)  # 72 is default PDF DPI\n        pix = page.get_pixmap(matrix=mat)\n\n        # Convert to PNG bytes\n        img_bytes = pix.tobytes(IMAGE_FORMAT)\n\n        pages.append({\n            \"page_number\": page_num + 1,\n            \"image_bytes\": img_bytes,\n            \"width\": pix.width,\n            \"height\": pix.height,\n            \"size_kb\": len(img_bytes) \/ 1024\n        })\n\n    doc.close()\n    return pages\n\n\ndef analyze_image_ollama(image_bytes, model=DEFAULT_VISION_MODEL, prompt=None):\n    \"\"\"\n    Analyze an image using Ollama vision model.\n\n    Args:\n        image_bytes: PNG\/JPEG image as bytes\n        model: Vision model name (e.g., minicpm-v:latest)\n        prompt: Custom prompt (default: document analysis prompt)\n\n    Returns:\n        dict with analysis results\n    \"\"\"\n    if prompt is None:\n        prompt = \"\"\"Analysiere diese Seite aus einem Schulungsdokument.\n\nBeschreibe strukturiert:\n1. **Überschriften\/Titel**: Welche Überschriften gibt es?\n2. **Hauptinhalt**: Worum geht es auf dieser Seite?\n3. **Visuelle Elemente**:\n   - Gibt es Bilder\/Fotos? Was zeigen sie?\n   - Gibt es Diagramme\/Charts? Was stellen sie dar?\n   - Gibt es Tabellen? Was enthalten sie?\n4. **Layout**: Wie ist die Seite aufgebaut (Spalten, Boxen, etc.)?\n5. **Besonderheiten**: Gibt es Hervorhebungen, Zitate oder Callouts?\n\nAntworte auf Deutsch und sei präzise.\"\"\"\n\n    # Encode image as base64\n    image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n\n    try:\n        response = requests.post(\n            f\"{OLLAMA_HOST}\/api\/generate\",\n            json={\n                \"model\": model,\n                \"prompt\": prompt,\n                \"images\": [image_base64],\n                \"stream\": False,\n                \"options\": {\n                    \"temperature\": 0.3,\n                    \"num_predict\": 1000\n                }\n            },\n            timeout=120\n        )\n        response.raise_for_status()\n\n        result = response.json()\n        return {\n            \"success\": True,\n            \"analysis\": result.get(\"response\", \"\"),\n            \"model\": model,\n            \"eval_count\": result.get(\"eval_count\", 0),",
            "numLines": 120,
            "startLine": 1,
            "totalLines": 371
        }
    }
}
← Vorheriger Zur Liste Nächster →