{
"event": "PostToolUse",
"raw_data": {
"session_id": "18ef5bf3-e872-4052-897e-53d6dc45b0b9",
"transcript_path": "\/root\/.claude\/projects\/-var-www\/18ef5bf3-e872-4052-897e-53d6dc45b0b9.jsonl",
"cwd": "\/var\/www\/dev.campus.systemische-tools.de",
"permission_mode": "acceptEdits",
"hook_event_name": "PostToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/dev.campus.systemische-tools.de\/src\/Infrastructure\/Docs\/HybridSearchService.php",
"limit": 30
},
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/dev.campus.systemische-tools.de\/src\/Infrastructure\/Docs\/HybridSearchService.php",
"content": "<?php\n\ndeclare(strict_types=1);\n\nnamespace Infrastructure\\Docs;\n\nuse Infrastructure\\AI\\OllamaService;\nuse PDO;\nuse RuntimeException;\n\n\/**\n * Hybrid Search Service combining vector search with SQL filtering.\n *\n * Implements a two-stage search:\n * 1. Semantic search via Qdrant (vector similarity)\n * 2. Structured filtering via MariaDB (taxonomy, entities, keywords)\n *\n * This approach achieves 70-85% precision vs 30-40% for pure vector search.\n *\/\nfinal class HybridSearchService\n{\n private const string QDRANT_HOST = 'http:\/\/localhost:6333';\n private const string COLLECTION = 'dokumentation_chunks';\n private const int TIMEOUT = 30;\n\n private PDO $pdo;\n private OllamaService $ollama;\n\n public function __construct()\n {",
"numLines": 30,
"startLine": 1,
"totalLines": 446
}
},
"tool_use_id": "toolu_012JCTtHaBry7v83YNT8Ln5K"
}
}