Protokoll #32335

ID32335
Zeitstempel2026-01-02 11:05:15.533228
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,416 (Input: 354, Output: 2,062)
Dauer90 ms
Request-Zeit2026-01-02 11:05:15.533228
Response-Zeit2026-01-02 11:05:15.622758

Request

{
    "event": "PreToolUse",
    "tool_name": "Edit",
    "tool_input": {
        "file_path": "\/var\/www\/migration\/content-pipeline\/docs\/VALIDATION_REPORT.md",
        "old_string": "See `config\/settings.env.example` for all options.",
        "new_string": "See `config\/settings.env.example` for all options.\n\n---\n\n## SOLID Usage Examples\n\n### Dependency Injection (Recommended)\n```python\n# Instead of global imports:\nfrom container import get_db, get_llm\n\ndb = get_db()\ndb.connect()\n\nllm = get_llm(use_anthropic=False)\nresponse = llm.chat(\"Analyze this text...\")\n```\n\n### Status Enums (Type-Safe)\n```python\nfrom enums import DocumentStatus, ContentOrderStatus\n\n# Instead of magic strings:\ndb.update_document_status(doc_id, DocumentStatus.DONE)\nupdate_order_status(order_id, ContentOrderStatus.COMPLETED)\n```\n\n### LLM Provider Interface\n```python\nfrom llm_interface import LLMFactory, LLMProvider\n\n# Create provider via factory:\nollama = LLMFactory.create(LLMProvider.OLLAMA, model=\"llama3.2:3b\")\nanthropic = LLMFactory.create(LLMProvider.ANTHROPIC)\n\n# Uniform interface:\nresponse = ollama.chat(\"Hello\")\nprint(response.text, response.tokens_output)\n```\n\n### JSON Parsing (DRY)\n```python\nfrom json_utils import parse_critic_response, parse_semantic_response\n\n# Instead of repeated regex + json.loads:\nfeedback = parse_critic_response(llm_response)\nsemantics = parse_semantic_response(llm_response)\n```"
    }
}

Response

{
    "tool_response": {
        "filePath": "\/var\/www\/migration\/content-pipeline\/docs\/VALIDATION_REPORT.md",
        "oldString": "See `config\/settings.env.example` for all options.",
        "newString": "See `config\/settings.env.example` for all options.\n\n---\n\n## SOLID Usage Examples\n\n### Dependency Injection (Recommended)\n```python\n# Instead of global imports:\nfrom container import get_db, get_llm\n\ndb = get_db()\ndb.connect()\n\nllm = get_llm(use_anthropic=False)\nresponse = llm.chat(\"Analyze this text...\")\n```\n\n### Status Enums (Type-Safe)\n```python\nfrom enums import DocumentStatus, ContentOrderStatus\n\n# Instead of magic strings:\ndb.update_document_status(doc_id, DocumentStatus.DONE)\nupdate_order_status(order_id, ContentOrderStatus.COMPLETED)\n```\n\n### LLM Provider Interface\n```python\nfrom llm_interface import LLMFactory, LLMProvider\n\n# Create provider via factory:\nollama = LLMFactory.create(LLMProvider.OLLAMA, model=\"llama3.2:3b\")\nanthropic = LLMFactory.create(LLMProvider.ANTHROPIC)\n\n# Uniform interface:\nresponse = ollama.chat(\"Hello\")\nprint(response.text, response.tokens_output)\n```\n\n### JSON Parsing (DRY)\n```python\nfrom json_utils import parse_critic_response, parse_semantic_response\n\n# Instead of repeated regex + json.loads:\nfeedback = parse_critic_response(llm_response)\nsemantics = parse_semantic_response(llm_response)\n```",
        "originalFile": "# Content Pipeline - Validation Report\n\n## Status: READY FOR EXTERNAL USE\n\nAll critical issues have been resolved. This package can be deployed by an external AI.\n\n---\n\n## Fixes Applied\n\n### 1. Configuration Abstraction\n- **src\/config.py** - Replaced with environment-based configuration\n- All 38 settings now loaded via `os.environ.get()`\n- Fallback to `.env` file in project root\n\n### 2. Model Registry Independence\n- **model_registry.py** - No longer depends on database\n- Models configured via static defaults + environment overrides\n- No `ki_dev.ai_models` table required\n\n### 3. Path Portability\n- **25 files fixed** - All `\/var\/www\/scripts\/pipeline` paths replaced\n- Now use `os.path.dirname(os.path.abspath(__file__))` for relative paths\n- Added `import os` where missing\n\n### 4. Database Schema\n- **32 tables** defined in `sql\/schema.sql`\n- Added missing tables:\n  - `pipeline_log` - Pipeline execution logs\n  - `protokoll` - LLM call logging\n  - `document_sections` - Document structure\n  - `content_config` - Content generation config\n  - `content_orders` - Content generation orders\n  - `content_versions` - Content versions\n  - `content_critiques` - Content critiques\n\n### 5. Removed Problematic Files\n- `run_demo.py` - Had hardcoded demo paths\n- `quality_test.py` - Had hardcoded test paths\n- `generate_semantics.py` - Had hardcoded credentials path\n\n### 6. SOLID Principles Implementation\nArchitecture refactored for better testability and maintainability:\n\n#### New Files Created\n| File | Purpose | SOLID Principle |\n|------|---------|-----------------|\n| `src\/enums.py` | Status enums (DocumentStatus, QueueStatus, ContentOrderStatus, etc.) | Type Safety |\n| `src\/llm_interface.py` | Abstract LLM provider with OllamaProvider, AnthropicProvider | **I**, **D** |\n| `src\/db_interface.py` | Database protocol interfaces (DocumentRepository, ChunkRepository, etc.) | **I**, **D** |\n| `src\/container.py` | Dependency Injection container | **D** |\n\n#### DRY Improvements (json_utils.py)\n- `parse_llm_response()` - Generic LLM JSON parsing with defaults\n- `parse_critic_response()` - Critic-specific response parsing\n- `parse_semantic_response()` - Semantic analysis response parsing\n- `parse_entity_response()` - Entity extraction response parsing\n\n#### Updated Files\n| File | Change |\n|------|--------|\n| `db.py` | DI documentation, interface compliance |\n| `db_documents.py` | DocumentStatus enum support |\n| `step_embed.py` | Type hints with DatabaseInterface |\n| `generators\/critic.py` | ContentOrderStatus enum, parse_critic_response() |\n| `generators\/persistence.py` | ContentOrderStatus enum support |\n| `analyzers\/semantic_analyzer.py` | parse_semantic_response() |\n\n#### SOLID Compliance\n| Principle | Status |\n|-----------|--------|\n| **S**ingle Responsibility | Mixins split by concern |\n| **O**pen\/Closed | LLMFactory.register() for new providers |\n| **L**iskov Substitution | Protocols define contracts |\n| **I**nterface Segregation | Separate protocols (DocumentRepository, ChunkRepository, etc.) |\n| **D**ependency Inversion | Container.get_db(), get_llm() instead of globals |\n\n---\n\n## Validation Results\n\n| Check | Result |\n|-------|--------|\n| Hardcoded `\/var\/www` paths | 0 |\n| Hardcoded database overrides | 0 |\n| CREATE TABLE statements | 32 |\n| Python files | 86 |\n| Environment variables in config | 38 |\n| SOLID interface files | 4 |\n| Status enums defined | 7 |\n\n---\n\n## Deployment Checklist\n\n1. **Environment Setup**\n   ```bash\n   cp config\/settings.env.example .env\n   nano .env  # Configure all settings\n   ```\n\n2. **Database**\n   ```bash\n   mariadb -e \"CREATE DATABASE content_pipeline CHARACTER SET utf8mb4\"\n   mariadb content_pipeline < sql\/schema.sql\n   ```\n\n3. **Python Environment**\n   ```bash\n   python3 -m venv venv\n   source venv\/bin\/activate\n   pip install -r src\/requirements.txt\n   ```\n\n4. **Qdrant Collections**\n   ```python\n   from qdrant_client import QdrantClient\n   from qdrant_client.models import VectorParams, Distance\n\n   client = QdrantClient(host=\"localhost\", port=6333)\n   client.create_collection(\"documents\", VectorParams(size=1024, distance=Distance.COSINE))\n   client.create_collection(\"entities\", VectorParams(size=1024, distance=Distance.COSINE))\n   ```\n\n5. **Ollama Models**\n   ```bash\n   ollama pull mxbai-embed-large\n   ollama pull llama3.2:3b\n   ```\n\n6. **Run Pipeline**\n   ```bash\n   source venv\/bin\/activate\n   export $(cat .env | xargs)\n   python src\/pipeline.py\n   ```\n\n---\n\n## Environment Variables Required\n\n| Variable | Default | Description |\n|----------|---------|-------------|\n| `PIPELINE_DOCUMENT_PATH` | `~\/documents` | Source documents directory |\n| `DB_HOST` | `localhost` | Database host |\n| `DB_NAME` | `content_pipeline` | Database name |\n| `DB_USER` | `pipeline` | Database user |\n| `DB_PASSWORD` | (required) | Database password |\n| `QDRANT_HOST` | `localhost` | Qdrant host |\n| `QDRANT_PORT` | `6333` | Qdrant port |\n| `OLLAMA_HOST` | `http:\/\/localhost:11434` | Ollama API URL |\n| `OLLAMA_EMBEDDING_MODEL` | `mxbai-embed-large` | Embedding model |\n| `OLLAMA_CHAT_MODEL` | `llama3.2:3b` | Chat model |\n\nSee `config\/settings.env.example` for all options.\n",
        "structuredPatch": [
            {
                "oldStart": 153,
                "oldLines": 3,
                "newStart": 153,
                "newLines": 50,
                "lines": [
                    " | `OLLAMA_CHAT_MODEL` | `llama3.2:3b` | Chat model |",
                    " ",
                    " See `config\/settings.env.example` for all options.",
                    "+",
                    "+---",
                    "+",
                    "+## SOLID Usage Examples",
                    "+",
                    "+### Dependency Injection (Recommended)",
                    "+```python",
                    "+# Instead of global imports:",
                    "+from container import get_db, get_llm",
                    "+",
                    "+db = get_db()",
                    "+db.connect()",
                    "+",
                    "+llm = get_llm(use_anthropic=False)",
                    "+response = llm.chat(\"Analyze this text...\")",
                    "+```",
                    "+",
                    "+### Status Enums (Type-Safe)",
                    "+```python",
                    "+from enums import DocumentStatus, ContentOrderStatus",
                    "+",
                    "+# Instead of magic strings:",
                    "+db.update_document_status(doc_id, DocumentStatus.DONE)",
                    "+update_order_status(order_id, ContentOrderStatus.COMPLETED)",
                    "+```",
                    "+",
                    "+### LLM Provider Interface",
                    "+```python",
                    "+from llm_interface import LLMFactory, LLMProvider",
                    "+",
                    "+# Create provider via factory:",
                    "+ollama = LLMFactory.create(LLMProvider.OLLAMA, model=\"llama3.2:3b\")",
                    "+anthropic = LLMFactory.create(LLMProvider.ANTHROPIC)",
                    "+",
                    "+# Uniform interface:",
                    "+response = ollama.chat(\"Hello\")",
                    "+print(response.text, response.tokens_output)",
                    "+```",
                    "+",
                    "+### JSON Parsing (DRY)",
                    "+```python",
                    "+from json_utils import parse_critic_response, parse_semantic_response",
                    "+",
                    "+# Instead of repeated regex + json.loads:",
                    "+feedback = parse_critic_response(llm_response)",
                    "+semantics = parse_semantic_response(llm_response)",
                    "+```"
                ]
            }
        ],
        "userModified": false,
        "replaceAll": false
    }
}
← Vorheriger Zur Liste Nächster →