Protokoll #32314

ID32314
Zeitstempel2026-01-02 03:49:56.739593
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens1,574 (Input: 393, Output: 1,181)
Dauer93 ms
Request-Zeit2026-01-02 03:49:56.739593
Response-Zeit2026-01-02 03:49:56.833034

Request

{
    "event": "PreToolUse",
    "tool_name": "Edit",
    "tool_input": {
        "file_path": "\/var\/www\/migration\/content-pipeline\/src\/step_embed.py",
        "old_string": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nfrom embed import embed_chunks, embed_pending_chunks\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress",
        "new_string": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\nSOLID: Dependency Injection via constructor.\n\"\"\"\n\nfrom __future__ import annotations\n\nfrom typing import TYPE_CHECKING\n\nfrom embed import embed_chunks, embed_pending_chunks\n\nif TYPE_CHECKING:\n    from db import PipelineProgress\n    from db_interface import DatabaseInterface\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db: DatabaseInterface, progress: PipelineProgress | None = None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance (injected dependency)\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress"
    }
}

Response

{
    "tool_response": {
        "filePath": "\/var\/www\/migration\/content-pipeline\/src\/step_embed.py",
        "oldString": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nfrom embed import embed_chunks, embed_pending_chunks\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress",
        "newString": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\nSOLID: Dependency Injection via constructor.\n\"\"\"\n\nfrom __future__ import annotations\n\nfrom typing import TYPE_CHECKING\n\nfrom embed import embed_chunks, embed_pending_chunks\n\nif TYPE_CHECKING:\n    from db import PipelineProgress\n    from db_interface import DatabaseInterface\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db: DatabaseInterface, progress: PipelineProgress | None = None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance (injected dependency)\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress",
        "originalFile": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nfrom embed import embed_chunks, embed_pending_chunks\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute(self, chunks, doc_id, file_name, file_path):\n        \"\"\"\n        Generate embeddings for chunks.\n\n        Args:\n            chunks: List of chunk dictionaries with db_id\n            doc_id: Document ID\n            file_name: Document filename (for logging)\n            file_path: Document file path (for metadata)\n\n        Returns:\n            int: Number of chunks successfully embedded\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"embed\")\n            self.progress.add_log(f\"Erstelle Embeddings für {len(chunks)} Chunks...\")\n\n        embedded = embed_chunks(chunks, doc_id, file_name, file_path, progress=self.progress)\n\n        self.db.log(\"INFO\", f\"Embedded {embedded}\/{len(chunks)} chunks\")\n\n        if self.progress:\n            self.progress.add_log(f\"{embedded} Embeddings erstellt\")\n\n        return embedded\n\n    def embed_pending(self):\n        \"\"\"\n        Process any pending chunks that need embeddings.\n\n        Returns:\n            int: Number of chunks embedded\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"embed\")\n            self.progress.add_log(\"Verarbeite ausstehende Embeddings...\")\n\n        embedded = embed_pending_chunks()\n\n        self.db.log(\"INFO\", f\"Embedded {embedded} pending chunks\")\n\n        if self.progress and embedded > 0:\n            self.progress.add_log(f\"{embedded} weitere Embeddings erstellt\")\n\n        return embedded\n",
        "structuredPatch": [
            {
                "oldStart": 3,
                "oldLines": 20,
                "newStart": 3,
                "newLines": 29,
                "lines": [
                    " Handles vector embedding generation and storage.",
                    " ",
                    " Part of modularized pipeline architecture.",
                    "+SOLID: Dependency Injection via constructor.",
                    " \"\"\"",
                    " ",
                    "+from __future__ import annotations",
                    "+",
                    "+from typing import TYPE_CHECKING",
                    "+",
                    " from embed import embed_chunks, embed_pending_chunks",
                    " ",
                    "+if TYPE_CHECKING:",
                    "+    from db import PipelineProgress",
                    "+    from db_interface import DatabaseInterface",
                    " ",
                    "+",
                    " class EmbeddingStep:",
                    "     \"\"\"Step: Generate and store vector embeddings.\"\"\"",
                    " ",
                    "-    def __init__(self, db, progress=None):",
                    "+    def __init__(self, db: DatabaseInterface, progress: PipelineProgress | None = None):",
                    "         \"\"\"",
                    "         Initialize embedding step.",
                    " ",
                    "         Args:",
                    "-            db: Database instance",
                    "+            db: Database instance (injected dependency)",
                    "             progress: Optional PipelineProgress instance",
                    "         \"\"\"",
                    "         self.db = db"
                ]
            }
        ],
        "userModified": false,
        "replaceAll": false
    }
}
← Vorheriger Zur Liste Nächster →