Protokoll #32311

ID32311
Zeitstempel2026-01-02 03:49:05.260703
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,807 (Input: 1,401, Output: 1,406)
Dauer89 ms
Request-Zeit2026-01-02 03:49:05.260703
Response-Zeit2026-01-02 03:49:05.349624

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/migration\/content-pipeline\/src\/container.py",
        "content": "\"\"\"\nDependency Injection Container.\n\nSOLID: Dependency Inversion - Central place for wiring dependencies.\nReplaces global instances with managed dependencies.\n\nUsage:\n    from container import Container\n\n    # Get database instance (singleton)\n    db = Container.get_database()\n\n    # Get LLM provider\n    llm = Container.get_llm_provider()\n\n    # Create step with injected dependencies\n    step = Container.create_embedding_step()\n\"\"\"\n\nfrom typing import Any, TypeVar\n\nfrom db_interface import DatabaseInterface\nfrom enums import LLMProvider\n\nT = TypeVar(\"T\")\n\n\nclass Container:\n    \"\"\"Simple dependency injection container.\n\n    Manages singleton instances and creates components with\n    proper dependency injection.\n    \"\"\"\n\n    _instances: dict[str, Any] = {}\n    _factories: dict[str, callable] = {}\n\n    @classmethod\n    def reset(cls) -> None:\n        \"\"\"Reset container (for testing).\"\"\"\n        cls._instances.clear()\n\n    @classmethod\n    def register(cls, name: str, factory: callable) -> None:\n        \"\"\"Register a factory function for a dependency.\n\n        Args:\n            name: Dependency name\n            factory: Factory function that creates the instance\n        \"\"\"\n        cls._factories[name] = factory\n\n    @classmethod\n    def get(cls, name: str) -> Any:\n        \"\"\"Get or create a singleton instance.\n\n        Args:\n            name: Dependency name\n\n        Returns:\n            Singleton instance\n        \"\"\"\n        if name not in cls._instances:\n            if name in cls._factories:\n                cls._instances[name] = cls._factories[name]()\n            else:\n                raise KeyError(f\"No factory registered for: {name}\")\n        return cls._instances[name]\n\n    @classmethod\n    def get_database(cls) -> DatabaseInterface:\n        \"\"\"Get database instance (singleton).\n\n        Returns:\n            Database instance implementing DatabaseInterface\n        \"\"\"\n        if \"database\" not in cls._instances:\n            from db import Database\n\n            cls._instances[\"database\"] = Database()\n        return cls._instances[\"database\"]\n\n    @classmethod\n    def get_llm_provider(\n        cls,\n        provider: LLMProvider | str | None = None,\n        use_anthropic: bool = False,\n        model: str | None = None,\n    ):\n        \"\"\"Get LLM provider instance.\n\n        Args:\n            provider: Explicit provider type\n            use_anthropic: Use Anthropic if True (legacy param)\n            model: Optional model override\n\n        Returns:\n            LLM provider instance\n        \"\"\"\n        from llm_interface import LLMFactory, get_llm_provider\n\n        if provider:\n            return LLMFactory.create(provider, model=model)\n        return get_llm_provider(use_anthropic=use_anthropic, model=model)\n\n    @classmethod\n    def create_embedding_step(cls, progress=None):\n        \"\"\"Create EmbeddingStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured EmbeddingStep\n        \"\"\"\n        from step_embed import EmbeddingStep\n\n        return EmbeddingStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_extraction_step(cls, progress=None):\n        \"\"\"Create ExtractionStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured ExtractionStep\n        \"\"\"\n        from step_extract import ExtractionStep\n\n        return ExtractionStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_load_step(cls, progress=None):\n        \"\"\"Create LoadStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured LoadStep\n        \"\"\"\n        from step_load import LoadStep\n\n        return LoadStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_transform_step(cls, progress=None):\n        \"\"\"Create TransformationStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured TransformationStep\n        \"\"\"\n        from step_transform import TransformationStep\n\n        return TransformationStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_semantic_step(cls, progress=None):\n        \"\"\"Create SemanticStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured SemanticStep\n        \"\"\"\n        from step_semantic import SemanticStep\n\n        return SemanticStep(cls.get_database(), progress)\n\n\n# Convenience functions for backward compatibility\ndef get_db() -> DatabaseInterface:\n    \"\"\"Get database instance.\n\n    Prefer this over importing `db` directly for testability.\n    \"\"\"\n    return Container.get_database()\n\n\ndef get_llm(use_anthropic: bool = False, model: str | None = None):\n    \"\"\"Get LLM provider instance.\n\n    Args:\n        use_anthropic: Use Anthropic instead of Ollama\n        model: Optional model override\n\n    Returns:\n        LLM provider instance\n    \"\"\"\n    return Container.get_llm_provider(use_anthropic=use_anthropic, model=model)\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/migration\/content-pipeline\/src\/container.py",
        "content": "\"\"\"\nDependency Injection Container.\n\nSOLID: Dependency Inversion - Central place for wiring dependencies.\nReplaces global instances with managed dependencies.\n\nUsage:\n    from container import Container\n\n    # Get database instance (singleton)\n    db = Container.get_database()\n\n    # Get LLM provider\n    llm = Container.get_llm_provider()\n\n    # Create step with injected dependencies\n    step = Container.create_embedding_step()\n\"\"\"\n\nfrom typing import Any, TypeVar\n\nfrom db_interface import DatabaseInterface\nfrom enums import LLMProvider\n\nT = TypeVar(\"T\")\n\n\nclass Container:\n    \"\"\"Simple dependency injection container.\n\n    Manages singleton instances and creates components with\n    proper dependency injection.\n    \"\"\"\n\n    _instances: dict[str, Any] = {}\n    _factories: dict[str, callable] = {}\n\n    @classmethod\n    def reset(cls) -> None:\n        \"\"\"Reset container (for testing).\"\"\"\n        cls._instances.clear()\n\n    @classmethod\n    def register(cls, name: str, factory: callable) -> None:\n        \"\"\"Register a factory function for a dependency.\n\n        Args:\n            name: Dependency name\n            factory: Factory function that creates the instance\n        \"\"\"\n        cls._factories[name] = factory\n\n    @classmethod\n    def get(cls, name: str) -> Any:\n        \"\"\"Get or create a singleton instance.\n\n        Args:\n            name: Dependency name\n\n        Returns:\n            Singleton instance\n        \"\"\"\n        if name not in cls._instances:\n            if name in cls._factories:\n                cls._instances[name] = cls._factories[name]()\n            else:\n                raise KeyError(f\"No factory registered for: {name}\")\n        return cls._instances[name]\n\n    @classmethod\n    def get_database(cls) -> DatabaseInterface:\n        \"\"\"Get database instance (singleton).\n\n        Returns:\n            Database instance implementing DatabaseInterface\n        \"\"\"\n        if \"database\" not in cls._instances:\n            from db import Database\n\n            cls._instances[\"database\"] = Database()\n        return cls._instances[\"database\"]\n\n    @classmethod\n    def get_llm_provider(\n        cls,\n        provider: LLMProvider | str | None = None,\n        use_anthropic: bool = False,\n        model: str | None = None,\n    ):\n        \"\"\"Get LLM provider instance.\n\n        Args:\n            provider: Explicit provider type\n            use_anthropic: Use Anthropic if True (legacy param)\n            model: Optional model override\n\n        Returns:\n            LLM provider instance\n        \"\"\"\n        from llm_interface import LLMFactory, get_llm_provider\n\n        if provider:\n            return LLMFactory.create(provider, model=model)\n        return get_llm_provider(use_anthropic=use_anthropic, model=model)\n\n    @classmethod\n    def create_embedding_step(cls, progress=None):\n        \"\"\"Create EmbeddingStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured EmbeddingStep\n        \"\"\"\n        from step_embed import EmbeddingStep\n\n        return EmbeddingStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_extraction_step(cls, progress=None):\n        \"\"\"Create ExtractionStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured ExtractionStep\n        \"\"\"\n        from step_extract import ExtractionStep\n\n        return ExtractionStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_load_step(cls, progress=None):\n        \"\"\"Create LoadStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured LoadStep\n        \"\"\"\n        from step_load import LoadStep\n\n        return LoadStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_transform_step(cls, progress=None):\n        \"\"\"Create TransformationStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured TransformationStep\n        \"\"\"\n        from step_transform import TransformationStep\n\n        return TransformationStep(cls.get_database(), progress)\n\n    @classmethod\n    def create_semantic_step(cls, progress=None):\n        \"\"\"Create SemanticStep with injected database.\n\n        Args:\n            progress: Optional PipelineProgress instance\n\n        Returns:\n            Configured SemanticStep\n        \"\"\"\n        from step_semantic import SemanticStep\n\n        return SemanticStep(cls.get_database(), progress)\n\n\n# Convenience functions for backward compatibility\ndef get_db() -> DatabaseInterface:\n    \"\"\"Get database instance.\n\n    Prefer this over importing `db` directly for testability.\n    \"\"\"\n    return Container.get_database()\n\n\ndef get_llm(use_anthropic: bool = False, model: str | None = None):\n    \"\"\"Get LLM provider instance.\n\n    Args:\n        use_anthropic: Use Anthropic instead of Ollama\n        model: Optional model override\n\n    Returns:\n        LLM provider instance\n    \"\"\"\n    return Container.get_llm_provider(use_anthropic=use_anthropic, model=model)\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →