Protokoll #32293

ID32293
Zeitstempel2026-01-02 03:38:59.941143
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuspending
Tokens575 (Input: 575, Output: 0)
Dauer-
Request-Zeit2026-01-02 03:38:59.941143
Response-Zeit-

Request

{
    "event": "PostToolUse",
    "tool_name": "Read",
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/migration\/content-pipeline\/src\/step_embed.py",
            "content": "\"\"\"\nEmbedding Step Module\nHandles vector embedding generation and storage.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nfrom embed import embed_chunks, embed_pending_chunks\n\n\nclass EmbeddingStep:\n    \"\"\"Step: Generate and store vector embeddings.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize embedding step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute(self, chunks, doc_id, file_name, file_path):\n        \"\"\"\n        Generate embeddings for chunks.\n\n        Args:\n            chunks: List of chunk dictionaries with db_id\n            doc_id: Document ID\n            file_name: Document filename (for logging)\n            file_path: Document file path (for metadata)\n\n        Returns:\n            int: Number of chunks successfully embedded\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"embed\")\n            self.progress.add_log(f\"Erstelle Embeddings für {len(chunks)} Chunks...\")\n\n        embedded = embed_chunks(chunks, doc_id, file_name, file_path, progress=self.progress)\n\n        self.db.log(\"INFO\", f\"Embedded {embedded}\/{len(chunks)} chunks\")\n\n        if self.progress:\n            self.progress.add_log(f\"{embedded} Embeddings erstellt\")\n\n        return embedded\n\n    def embed_pending(self):\n        \"\"\"\n        Process any pending chunks that need embeddings.\n\n        Returns:\n            int: Number of chunks embedded\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"embed\")\n            self.progress.add_log(\"Verarbeite ausstehende Embeddings...\")\n\n        embedded = embed_pending_chunks()\n\n        self.db.log(\"INFO\", f\"Embedded {embedded} pending chunks\")\n\n        if self.progress and embedded > 0:\n            self.progress.add_log(f\"{embedded} weitere Embeddings erstellt\")\n\n        return embedded\n",
            "numLines": 70,
            "startLine": 1,
            "totalLines": 70
        }
    }
}

Response

-
← Vorheriger Zur Liste Nächster →