{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/migration\/content-pipeline\/src\/step_embed.py"
}
}
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/migration\/content-pipeline\/src\/knowledge\/models.py",
"content": "\"\"\"Datenmodelle für Wissensextraktion.\"\"\"\n\nfrom dataclasses import dataclass\nfrom enum import Enum\n\n\nclass KnowledgeLevel(Enum):\n \"\"\"Ebene der Wissensextraktion.\"\"\"\n\n PAGE = \"page\"\n SECTION = \"section\"\n DOCUMENT = \"document\"\n\n\nclass KnowledgeType(Enum):\n \"\"\"Typ des extrahierten Wissens.\"\"\"\n\n ENTITY = \"entity\"\n SEMANTIC = \"semantic\"\n ONTOLOGY = \"ontology\"\n TAXONOMY = \"taxonomy\"\n\n\n@dataclass\nclass ModelConfig:\n \"\"\"Konfiguration für LLM-Modell.\"\"\"\n\n provider: str # 'ollama' oder 'anthropic'\n model_name: str\n temperature: float = 0.3\n max_tokens: int = 2000\n\n\n# Standard-Modellkonfigurationen\nDEFAULT_MODELS = {\n \"ollama\": ModelConfig(\"ollama\", \"gemma3:27b-it-qat\"),\n \"anthropic\": ModelConfig(\"anthropic\", \"claude-3-haiku-20240307\"),\n \"anthropic_opus\": ModelConfig(\"anthropic\", \"claude-opus-4-5-20251101\"),\n}\n",
"numLines": 40,
"startLine": 1,
"totalLines": 40
}
}
}