Protokoll #32223

ID32223
Zeitstempel2026-01-02 01:54:50.841923
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens3,791 (Input: 1,893, Output: 1,898)
Dauer90 ms
Request-Zeit2026-01-02 01:54:50.841923
Response-Zeit2026-01-02 01:54:50.931832

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/migration\/content-pipeline\/docs\/ARCHITECTURE.md",
        "content": "# Content Pipeline - Architecture Documentation\n\n## System Components\n\n### 1. Document Processing Layer\n\n```\nDocuments (PDF, DOCX, PPTX, MD, TXT)\n           │\n           ▼\n    ┌─────────────┐\n    │   DETECT    │  → Scans directory, hashes files\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   EXTRACT   │  → PyMuPDF, python-docx, python-pptx\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   VISION    │  → Tesseract OCR for images\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │    CHUNK    │  → Semantic splitting with overlap\n    └─────────────┘\n```\n\n### 2. Embedding Layer\n\n```\n    Chunks (text segments)\n           │\n           ▼\n    ┌─────────────┐\n    │    EMBED    │  → Ollama mxbai-embed-large (1024 dims)\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   QDRANT    │  → Vector storage & similarity search\n    └─────────────┘\n```\n\n### 3. Semantic Analysis Layer\n\n```\n    Chunks + Embeddings\n           │\n           ├──────────────────────────────────┐\n           ▼                                  ▼\n    ┌─────────────┐                    ┌─────────────┐\n    │   ENTITY    │                    │  SEMANTIC   │\n    │  EXTRACTOR  │                    │  ANALYZER   │\n    └─────────────┘                    └─────────────┘\n           │                                  │\n           ▼                                  ▼\n    ┌─────────────┐                    ┌─────────────┐\n    │  RELATION   │                    │  TAXONOMY   │\n    │  EXTRACTOR  │                    │ CLASSIFIER  │\n    └─────────────┘                    └─────────────┘\n           │                                  │\n           └──────────────┬───────────────────┘\n                          ▼\n                   ┌─────────────┐\n                   │  KNOWLEDGE  │\n                   │    GRAPH    │\n                   └─────────────┘\n```\n\n## Data Flow\n\n### Document Lifecycle\n\n```\n1. PENDING     → Document detected, awaiting processing\n2. IMPORTING   → Being read from filesystem\n3. IMPORTED    → Text extracted\n4. CHUNKING    → Being split into chunks\n5. CHUNKED     → Chunks created\n6. EMBEDDING   → Generating vectors\n7. EMBEDDED    → Vectors stored in Qdrant\n8. ENRICHING   → Semantic analysis running\n9. ENRICHED    → Entities\/relations extracted\n10. DONE       → Fully processed\n```\n\n### Chunk Processing\n\n```\nChunk Status:\n- created    → Initial state\n- embedding  → Vector generation in progress\n- embedded   → Vector stored in Qdrant\n- error      → Processing failed\n- deprecated → Superseded by newer version\n```\n\n## Database Design\n\n### Entity-Relationship Overview\n\n```\ndocuments ─────┬───── document_pages\n               │\n               └───── chunks ─────┬───── chunk_semantics\n                       │          │\n                       │          └───── chunk_entities ───── entities\n                       │                                        │\n                       │                                        ├── entity_relations\n                       │                                        │\n                       └───── chunk_taxonomy ─────────── taxonomy_terms\n                                                              │\n                                                        entity_taxonomy_mapping\n```\n\n### Key Relationships\n\n| From | To | Relationship |\n|------|-----|--------------|\n| documents | chunks | 1:N |\n| documents | document_pages | 1:N |\n| chunks | chunk_semantics | 1:1 |\n| chunks | entities | N:M (via chunk_entities) |\n| entities | entities | N:M (via entity_relations) |\n| entities | taxonomy_terms | N:M (via entity_taxonomy_mapping) |\n\n## LLM Integration\n\n### Embedding Pipeline\n\n```python\n# Ollama Embedding\ndef embed_text(text: str) -> list[float]:\n    response = ollama.embed(\n        model=\"mxbai-embed-large\",\n        input=text\n    )\n    return response[\"embeddings\"][0]  # 1024 dimensions\n```\n\n### Analysis Pipeline\n\n```python\n# Semantic Analysis with Ollama or Anthropic\ndef analyze_chunk(chunk: str) -> dict:\n    prompt = f\"\"\"Analyze this text:\n    {chunk}\n\n    Extract: keywords, sentiment, topics, entities\"\"\"\n\n    if USE_ANTHROPIC:\n        response = anthropic.messages.create(...)\n    else:\n        response = ollama.chat(model=\"llama3.2:3b\", ...)\n\n    return parse_response(response)\n```\n\n## Qdrant Vector Storage\n\n### Collection Structure\n\n```python\n# Documents collection\n{\n    \"id\": \"uuid\",\n    \"vector\": [float; 1024],\n    \"payload\": {\n        \"chunk_id\": int,\n        \"document_id\": int,\n        \"content\": str,\n        \"heading_path\": list[str],\n        \"page_number\": int\n    }\n}\n```\n\n### Search Query\n\n```python\nresults = client.search(\n    collection_name=\"documents\",\n    query_vector=query_embedding,\n    limit=10,\n    query_filter={\n        \"must\": [\n            {\"key\": \"document_id\", \"match\": {\"value\": 123}}\n        ]\n    }\n)\n```\n\n## Scaling Considerations\n\n### Batch Processing\n\n```python\n# Process documents in batches\nBATCH_SIZE = 10\n\nfor batch in chunks(documents, BATCH_SIZE):\n    for doc in batch:\n        process_document(doc)\n\n    # Commit after each batch\n    connection.commit()\n```\n\n### Queue-Based Processing\n\n```python\n# Async semantic processing via queue\nif not SEMANTIC_SYNC:\n    queue_for_semantic_analysis(chunk_id)\n    # Worker processes queue separately\n```\n\n### Parallel Embedding\n\n```python\n# Thread pool for embedding\nfrom concurrent.futures import ThreadPoolExecutor\n\nwith ThreadPoolExecutor(max_workers=4) as executor:\n    embeddings = list(executor.map(embed_text, chunks))\n```\n\n## Error Handling\n\n### Retry Logic\n\n```python\nMAX_RETRIES = 3\nBACKOFF_BASE = 2\n\nfor attempt in range(MAX_RETRIES):\n    try:\n        result = process_step(document)\n        break\n    except Exception as e:\n        if attempt == MAX_RETRIES - 1:\n            mark_as_failed(document, str(e))\n            raise\n        time.sleep(BACKOFF_BASE ** attempt)\n```\n\n### Provenance Tracking\n\n```python\n# Track processing history\nINSERT INTO provenance (\n    artifact_type, artifact_id,\n    source_type, pipeline_step,\n    model_used, prompt_version\n) VALUES (\n    'chunk', chunk_id,\n    'extraction', 'semantic_analyze',\n    'llama3.2:3b', '1.2'\n)\n```\n\n## Configuration Hierarchy\n\n```\n1. Environment Variables (.env)\n      ↓\n2. config\/settings.py (defaults)\n      ↓\n3. pipeline_configs table (runtime)\n      ↓\n4. pipeline_steps table (per-step config)\n```\n\n## Monitoring\n\n### Key Metrics\n\n| Metric | Table\/Query |\n|--------|-------------|\n| Documents processed | `SELECT COUNT(*) FROM documents WHERE status='done'` |\n| Chunks created | `SELECT COUNT(*) FROM chunks` |\n| Embeddings stored | `SELECT COUNT(*) FROM chunks WHERE qdrant_id IS NOT NULL` |\n| Entities extracted | `SELECT COUNT(*) FROM entities` |\n| Pipeline runs | `SELECT * FROM pipeline_runs ORDER BY created_at DESC` |\n\n### Health Checks\n\n```python\ndef health_check():\n    checks = {\n        \"database\": check_db_connection(),\n        \"qdrant\": check_qdrant_connection(),\n        \"ollama\": check_ollama_status(),\n    }\n    return all(checks.values()), checks\n```\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/migration\/content-pipeline\/docs\/ARCHITECTURE.md",
        "content": "# Content Pipeline - Architecture Documentation\n\n## System Components\n\n### 1. Document Processing Layer\n\n```\nDocuments (PDF, DOCX, PPTX, MD, TXT)\n           │\n           ▼\n    ┌─────────────┐\n    │   DETECT    │  → Scans directory, hashes files\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   EXTRACT   │  → PyMuPDF, python-docx, python-pptx\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   VISION    │  → Tesseract OCR for images\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │    CHUNK    │  → Semantic splitting with overlap\n    └─────────────┘\n```\n\n### 2. Embedding Layer\n\n```\n    Chunks (text segments)\n           │\n           ▼\n    ┌─────────────┐\n    │    EMBED    │  → Ollama mxbai-embed-large (1024 dims)\n    └─────────────┘\n           │\n           ▼\n    ┌─────────────┐\n    │   QDRANT    │  → Vector storage & similarity search\n    └─────────────┘\n```\n\n### 3. Semantic Analysis Layer\n\n```\n    Chunks + Embeddings\n           │\n           ├──────────────────────────────────┐\n           ▼                                  ▼\n    ┌─────────────┐                    ┌─────────────┐\n    │   ENTITY    │                    │  SEMANTIC   │\n    │  EXTRACTOR  │                    │  ANALYZER   │\n    └─────────────┘                    └─────────────┘\n           │                                  │\n           ▼                                  ▼\n    ┌─────────────┐                    ┌─────────────┐\n    │  RELATION   │                    │  TAXONOMY   │\n    │  EXTRACTOR  │                    │ CLASSIFIER  │\n    └─────────────┘                    └─────────────┘\n           │                                  │\n           └──────────────┬───────────────────┘\n                          ▼\n                   ┌─────────────┐\n                   │  KNOWLEDGE  │\n                   │    GRAPH    │\n                   └─────────────┘\n```\n\n## Data Flow\n\n### Document Lifecycle\n\n```\n1. PENDING     → Document detected, awaiting processing\n2. IMPORTING   → Being read from filesystem\n3. IMPORTED    → Text extracted\n4. CHUNKING    → Being split into chunks\n5. CHUNKED     → Chunks created\n6. EMBEDDING   → Generating vectors\n7. EMBEDDED    → Vectors stored in Qdrant\n8. ENRICHING   → Semantic analysis running\n9. ENRICHED    → Entities\/relations extracted\n10. DONE       → Fully processed\n```\n\n### Chunk Processing\n\n```\nChunk Status:\n- created    → Initial state\n- embedding  → Vector generation in progress\n- embedded   → Vector stored in Qdrant\n- error      → Processing failed\n- deprecated → Superseded by newer version\n```\n\n## Database Design\n\n### Entity-Relationship Overview\n\n```\ndocuments ─────┬───── document_pages\n               │\n               └───── chunks ─────┬───── chunk_semantics\n                       │          │\n                       │          └───── chunk_entities ───── entities\n                       │                                        │\n                       │                                        ├── entity_relations\n                       │                                        │\n                       └───── chunk_taxonomy ─────────── taxonomy_terms\n                                                              │\n                                                        entity_taxonomy_mapping\n```\n\n### Key Relationships\n\n| From | To | Relationship |\n|------|-----|--------------|\n| documents | chunks | 1:N |\n| documents | document_pages | 1:N |\n| chunks | chunk_semantics | 1:1 |\n| chunks | entities | N:M (via chunk_entities) |\n| entities | entities | N:M (via entity_relations) |\n| entities | taxonomy_terms | N:M (via entity_taxonomy_mapping) |\n\n## LLM Integration\n\n### Embedding Pipeline\n\n```python\n# Ollama Embedding\ndef embed_text(text: str) -> list[float]:\n    response = ollama.embed(\n        model=\"mxbai-embed-large\",\n        input=text\n    )\n    return response[\"embeddings\"][0]  # 1024 dimensions\n```\n\n### Analysis Pipeline\n\n```python\n# Semantic Analysis with Ollama or Anthropic\ndef analyze_chunk(chunk: str) -> dict:\n    prompt = f\"\"\"Analyze this text:\n    {chunk}\n\n    Extract: keywords, sentiment, topics, entities\"\"\"\n\n    if USE_ANTHROPIC:\n        response = anthropic.messages.create(...)\n    else:\n        response = ollama.chat(model=\"llama3.2:3b\", ...)\n\n    return parse_response(response)\n```\n\n## Qdrant Vector Storage\n\n### Collection Structure\n\n```python\n# Documents collection\n{\n    \"id\": \"uuid\",\n    \"vector\": [float; 1024],\n    \"payload\": {\n        \"chunk_id\": int,\n        \"document_id\": int,\n        \"content\": str,\n        \"heading_path\": list[str],\n        \"page_number\": int\n    }\n}\n```\n\n### Search Query\n\n```python\nresults = client.search(\n    collection_name=\"documents\",\n    query_vector=query_embedding,\n    limit=10,\n    query_filter={\n        \"must\": [\n            {\"key\": \"document_id\", \"match\": {\"value\": 123}}\n        ]\n    }\n)\n```\n\n## Scaling Considerations\n\n### Batch Processing\n\n```python\n# Process documents in batches\nBATCH_SIZE = 10\n\nfor batch in chunks(documents, BATCH_SIZE):\n    for doc in batch:\n        process_document(doc)\n\n    # Commit after each batch\n    connection.commit()\n```\n\n### Queue-Based Processing\n\n```python\n# Async semantic processing via queue\nif not SEMANTIC_SYNC:\n    queue_for_semantic_analysis(chunk_id)\n    # Worker processes queue separately\n```\n\n### Parallel Embedding\n\n```python\n# Thread pool for embedding\nfrom concurrent.futures import ThreadPoolExecutor\n\nwith ThreadPoolExecutor(max_workers=4) as executor:\n    embeddings = list(executor.map(embed_text, chunks))\n```\n\n## Error Handling\n\n### Retry Logic\n\n```python\nMAX_RETRIES = 3\nBACKOFF_BASE = 2\n\nfor attempt in range(MAX_RETRIES):\n    try:\n        result = process_step(document)\n        break\n    except Exception as e:\n        if attempt == MAX_RETRIES - 1:\n            mark_as_failed(document, str(e))\n            raise\n        time.sleep(BACKOFF_BASE ** attempt)\n```\n\n### Provenance Tracking\n\n```python\n# Track processing history\nINSERT INTO provenance (\n    artifact_type, artifact_id,\n    source_type, pipeline_step,\n    model_used, prompt_version\n) VALUES (\n    'chunk', chunk_id,\n    'extraction', 'semantic_analyze',\n    'llama3.2:3b', '1.2'\n)\n```\n\n## Configuration Hierarchy\n\n```\n1. Environment Variables (.env)\n      ↓\n2. config\/settings.py (defaults)\n      ↓\n3. pipeline_configs table (runtime)\n      ↓\n4. pipeline_steps table (per-step config)\n```\n\n## Monitoring\n\n### Key Metrics\n\n| Metric | Table\/Query |\n|--------|-------------|\n| Documents processed | `SELECT COUNT(*) FROM documents WHERE status='done'` |\n| Chunks created | `SELECT COUNT(*) FROM chunks` |\n| Embeddings stored | `SELECT COUNT(*) FROM chunks WHERE qdrant_id IS NOT NULL` |\n| Entities extracted | `SELECT COUNT(*) FROM entities` |\n| Pipeline runs | `SELECT * FROM pipeline_runs ORDER BY created_at DESC` |\n\n### Health Checks\n\n```python\ndef health_check():\n    checks = {\n        \"database\": check_db_connection(),\n        \"qdrant\": check_qdrant_connection(),\n        \"ollama\": check_ollama_status(),\n    }\n    return all(checks.values()), checks\n```\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →