Protokoll #32219

ID32219
Zeitstempel2026-01-02 01:52:24.891945
Clientroot
IP145.224.72.245
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,943 (Input: 1,469, Output: 1,474)
Dauer1097 ms
Request-Zeit2026-01-02 01:52:24.891945
Response-Zeit2026-01-02 01:52:25.988801

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/migration\/content-pipeline\/config\/settings.py",
        "content": "\"\"\"\nContent Pipeline - Abstracted Configuration\n\nAll settings are loaded from environment variables for portability.\nCopy settings.env.example to .env and adjust values.\n\"\"\"\n\nimport os\nfrom pathlib import Path\n\n# =============================================================================\n# PATHS\n# =============================================================================\n\n# Document source directory\nDOCUMENT_SOURCE_PATH = os.environ.get(\n    \"PIPELINE_DOCUMENT_PATH\",\n    \"\/path\/to\/your\/documents\"\n)\n\n# Supported file extensions\nSUPPORTED_EXTENSIONS = [\".pdf\", \".pptx\", \".docx\", \".md\", \".txt\"]\n\n# =============================================================================\n# DATABASE - Content (chunks, entities, semantic data)\n# =============================================================================\n\nDB_CONFIG = {\n    \"host\": os.environ.get(\"DB_HOST\", \"localhost\"),\n    \"database\": os.environ.get(\"DB_NAME\", \"content_pipeline\"),\n    \"user\": os.environ.get(\"DB_USER\", \"pipeline\"),\n    \"password\": os.environ.get(\"DB_PASSWORD\", \"\"),\n    \"charset\": \"utf8mb4\",\n}\n\n# Optional: Separate logging database\nDB_LOG_CONFIG = {\n    \"host\": os.environ.get(\"DB_LOG_HOST\", os.environ.get(\"DB_HOST\", \"localhost\")),\n    \"database\": os.environ.get(\"DB_LOG_NAME\", os.environ.get(\"DB_NAME\", \"content_pipeline\")),\n    \"user\": os.environ.get(\"DB_LOG_USER\", os.environ.get(\"DB_USER\", \"pipeline\")),\n    \"password\": os.environ.get(\"DB_LOG_PASSWORD\", os.environ.get(\"DB_PASSWORD\", \"\")),\n    \"charset\": \"utf8mb4\",\n}\n\n# =============================================================================\n# QDRANT VECTOR DATABASE\n# =============================================================================\n\nQDRANT_HOST = os.environ.get(\"QDRANT_HOST\", \"localhost\")\nQDRANT_PORT = int(os.environ.get(\"QDRANT_PORT\", \"6333\"))\n\n# Collection configuration\n# Format: {collection_name: {size: embedding_dim, distance: metric}}\nQDRANT_COLLECTIONS = {\n    os.environ.get(\"QDRANT_COLLECTION_DOCUMENTS\", \"documents\"): {\n        \"size\": 1024,\n        \"distance\": \"Cosine\"\n    },\n    os.environ.get(\"QDRANT_COLLECTION_ENTITIES\", \"entities\"): {\n        \"size\": 1024,\n        \"distance\": \"Cosine\"\n    },\n}\n\n# =============================================================================\n# OLLAMA - Local LLM (Embeddings & Chat)\n# =============================================================================\n\nOLLAMA_HOST = os.environ.get(\"OLLAMA_HOST\", \"http:\/\/localhost:11434\")\n\n# Embedding model - must output vectors matching QDRANT collection size\nEMBEDDING_MODEL = os.environ.get(\"OLLAMA_EMBEDDING_MODEL\", \"mxbai-embed-large\")\nEMBEDDING_DIMENSION = int(os.environ.get(\"EMBEDDING_DIMENSION\", \"1024\"))\n\n# Chat\/Generation model for analysis\nOLLAMA_CHAT_MODEL = os.environ.get(\"OLLAMA_CHAT_MODEL\", \"llama3.2:3b\")\n\n# =============================================================================\n# ANTHROPIC API (Optional - for higher quality analysis)\n# =============================================================================\n\nANTHROPIC_API_KEY = os.environ.get(\"ANTHROPIC_API_KEY\", None)\nANTHROPIC_MODEL = os.environ.get(\"ANTHROPIC_MODEL\", \"claude-sonnet-4-20250514\")\n\n# =============================================================================\n# CHUNKING SETTINGS\n# =============================================================================\n\nCHUNK_OVERLAP_PERCENT = int(os.environ.get(\"CHUNK_OVERLAP_PERCENT\", \"10\"))\nMIN_CHUNK_SIZE = int(os.environ.get(\"MIN_CHUNK_SIZE\", \"100\"))\nMAX_CHUNK_SIZE = int(os.environ.get(\"MAX_CHUNK_SIZE\", \"2000\"))\n\n# =============================================================================\n# PIPELINE SETTINGS\n# =============================================================================\n\nMAX_RETRIES = int(os.environ.get(\"PIPELINE_MAX_RETRIES\", \"3\"))\nRETRY_BACKOFF_BASE = int(os.environ.get(\"PIPELINE_RETRY_BACKOFF\", \"2\"))\n\n# Semantic analysis: sync (immediate) or async (queue)\nSEMANTIC_SYNC = os.environ.get(\"SEMANTIC_SYNC\", \"true\").lower() == \"true\"\nSEMANTIC_USE_ANTHROPIC = os.environ.get(\"SEMANTIC_USE_ANTHROPIC\", \"false\").lower() == \"true\"\nSEMANTIC_QUEUE_BATCH_SIZE = int(os.environ.get(\"SEMANTIC_QUEUE_BATCH_SIZE\", \"5\"))\n\n# =============================================================================\n# OCR SETTINGS\n# =============================================================================\n\nOCR_ENABLED = os.environ.get(\"OCR_ENABLED\", \"true\").lower() == \"true\"\nOCR_LANGUAGE = os.environ.get(\"OCR_LANGUAGE\", \"deu\")  # tesseract language code\n\n# =============================================================================\n# LOGGING\n# =============================================================================\n\nLOG_LEVEL = os.environ.get(\"LOG_LEVEL\", \"INFO\")\n\n\n# =============================================================================\n# HELPER FUNCTIONS\n# =============================================================================\n\ndef get_db_password():\n    \"\"\"Get database password from environment.\"\"\"\n    return os.environ.get(\"DB_PASSWORD\", \"\")\n\n\ndef get_anthropic_key():\n    \"\"\"Get Anthropic API key from environment.\"\"\"\n    return os.environ.get(\"ANTHROPIC_API_KEY\", \"\")\n\n\ndef get_ollama_model_id(full_key: str) -> str:\n    \"\"\"Extract Ollama model ID from full_key.\n\n    Example: 'ollama:gemma3:27b-it-qat' -> 'gemma3:27b-it-qat'\n    \"\"\"\n    if full_key.startswith(\"ollama:\"):\n        return full_key[7:]\n    return full_key\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/migration\/content-pipeline\/config\/settings.py",
        "content": "\"\"\"\nContent Pipeline - Abstracted Configuration\n\nAll settings are loaded from environment variables for portability.\nCopy settings.env.example to .env and adjust values.\n\"\"\"\n\nimport os\nfrom pathlib import Path\n\n# =============================================================================\n# PATHS\n# =============================================================================\n\n# Document source directory\nDOCUMENT_SOURCE_PATH = os.environ.get(\n    \"PIPELINE_DOCUMENT_PATH\",\n    \"\/path\/to\/your\/documents\"\n)\n\n# Supported file extensions\nSUPPORTED_EXTENSIONS = [\".pdf\", \".pptx\", \".docx\", \".md\", \".txt\"]\n\n# =============================================================================\n# DATABASE - Content (chunks, entities, semantic data)\n# =============================================================================\n\nDB_CONFIG = {\n    \"host\": os.environ.get(\"DB_HOST\", \"localhost\"),\n    \"database\": os.environ.get(\"DB_NAME\", \"content_pipeline\"),\n    \"user\": os.environ.get(\"DB_USER\", \"pipeline\"),\n    \"password\": os.environ.get(\"DB_PASSWORD\", \"\"),\n    \"charset\": \"utf8mb4\",\n}\n\n# Optional: Separate logging database\nDB_LOG_CONFIG = {\n    \"host\": os.environ.get(\"DB_LOG_HOST\", os.environ.get(\"DB_HOST\", \"localhost\")),\n    \"database\": os.environ.get(\"DB_LOG_NAME\", os.environ.get(\"DB_NAME\", \"content_pipeline\")),\n    \"user\": os.environ.get(\"DB_LOG_USER\", os.environ.get(\"DB_USER\", \"pipeline\")),\n    \"password\": os.environ.get(\"DB_LOG_PASSWORD\", os.environ.get(\"DB_PASSWORD\", \"\")),\n    \"charset\": \"utf8mb4\",\n}\n\n# =============================================================================\n# QDRANT VECTOR DATABASE\n# =============================================================================\n\nQDRANT_HOST = os.environ.get(\"QDRANT_HOST\", \"localhost\")\nQDRANT_PORT = int(os.environ.get(\"QDRANT_PORT\", \"6333\"))\n\n# Collection configuration\n# Format: {collection_name: {size: embedding_dim, distance: metric}}\nQDRANT_COLLECTIONS = {\n    os.environ.get(\"QDRANT_COLLECTION_DOCUMENTS\", \"documents\"): {\n        \"size\": 1024,\n        \"distance\": \"Cosine\"\n    },\n    os.environ.get(\"QDRANT_COLLECTION_ENTITIES\", \"entities\"): {\n        \"size\": 1024,\n        \"distance\": \"Cosine\"\n    },\n}\n\n# =============================================================================\n# OLLAMA - Local LLM (Embeddings & Chat)\n# =============================================================================\n\nOLLAMA_HOST = os.environ.get(\"OLLAMA_HOST\", \"http:\/\/localhost:11434\")\n\n# Embedding model - must output vectors matching QDRANT collection size\nEMBEDDING_MODEL = os.environ.get(\"OLLAMA_EMBEDDING_MODEL\", \"mxbai-embed-large\")\nEMBEDDING_DIMENSION = int(os.environ.get(\"EMBEDDING_DIMENSION\", \"1024\"))\n\n# Chat\/Generation model for analysis\nOLLAMA_CHAT_MODEL = os.environ.get(\"OLLAMA_CHAT_MODEL\", \"llama3.2:3b\")\n\n# =============================================================================\n# ANTHROPIC API (Optional - for higher quality analysis)\n# =============================================================================\n\nANTHROPIC_API_KEY = os.environ.get(\"ANTHROPIC_API_KEY\", None)\nANTHROPIC_MODEL = os.environ.get(\"ANTHROPIC_MODEL\", \"claude-sonnet-4-20250514\")\n\n# =============================================================================\n# CHUNKING SETTINGS\n# =============================================================================\n\nCHUNK_OVERLAP_PERCENT = int(os.environ.get(\"CHUNK_OVERLAP_PERCENT\", \"10\"))\nMIN_CHUNK_SIZE = int(os.environ.get(\"MIN_CHUNK_SIZE\", \"100\"))\nMAX_CHUNK_SIZE = int(os.environ.get(\"MAX_CHUNK_SIZE\", \"2000\"))\n\n# =============================================================================\n# PIPELINE SETTINGS\n# =============================================================================\n\nMAX_RETRIES = int(os.environ.get(\"PIPELINE_MAX_RETRIES\", \"3\"))\nRETRY_BACKOFF_BASE = int(os.environ.get(\"PIPELINE_RETRY_BACKOFF\", \"2\"))\n\n# Semantic analysis: sync (immediate) or async (queue)\nSEMANTIC_SYNC = os.environ.get(\"SEMANTIC_SYNC\", \"true\").lower() == \"true\"\nSEMANTIC_USE_ANTHROPIC = os.environ.get(\"SEMANTIC_USE_ANTHROPIC\", \"false\").lower() == \"true\"\nSEMANTIC_QUEUE_BATCH_SIZE = int(os.environ.get(\"SEMANTIC_QUEUE_BATCH_SIZE\", \"5\"))\n\n# =============================================================================\n# OCR SETTINGS\n# =============================================================================\n\nOCR_ENABLED = os.environ.get(\"OCR_ENABLED\", \"true\").lower() == \"true\"\nOCR_LANGUAGE = os.environ.get(\"OCR_LANGUAGE\", \"deu\")  # tesseract language code\n\n# =============================================================================\n# LOGGING\n# =============================================================================\n\nLOG_LEVEL = os.environ.get(\"LOG_LEVEL\", \"INFO\")\n\n\n# =============================================================================\n# HELPER FUNCTIONS\n# =============================================================================\n\ndef get_db_password():\n    \"\"\"Get database password from environment.\"\"\"\n    return os.environ.get(\"DB_PASSWORD\", \"\")\n\n\ndef get_anthropic_key():\n    \"\"\"Get Anthropic API key from environment.\"\"\"\n    return os.environ.get(\"ANTHROPIC_API_KEY\", \"\")\n\n\ndef get_ollama_model_id(full_key: str) -> str:\n    \"\"\"Extract Ollama model ID from full_key.\n\n    Example: 'ollama:gemma3:27b-it-qat' -> 'gemma3:27b-it-qat'\n    \"\"\"\n    if full_key.startswith(\"ollama:\"):\n        return full_key[7:]\n    return full_key\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →