Protokoll #3218

ID3218
Zeitstempel2025-12-22 02:07:27.980880
Clientroot
IP145.224.96.190
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens1,037 (Input: 516, Output: 521)
Dauer99 ms
Request-Zeit2025-12-22 02:07:27.980880
Response-Zeit2025-12-22 02:07:28.079854

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/dev.campus.systemische-tools.de\/src\/Infrastructure\/AI\/VectorSearchService.php",
        "content": "<?php\n\nnamespace Infrastructure\\AI;\n\n\/**\n * VectorSearchService - Unified semantic search interface\n *\n * Wraps OllamaService (embeddings) and QdrantService (vector search)\n * for consistent vector search across the application.\n *\/\nclass VectorSearchService\n{\n    private OllamaService $ollama;\n    private QdrantService $qdrant;\n\n    public function __construct(?OllamaService $ollama = null, ?QdrantService $qdrant = null)\n    {\n        $this->ollama = $ollama ?? new OllamaService();\n        $this->qdrant = $qdrant ?? new QdrantService();\n    }\n\n    \/**\n     * Perform semantic search using embedding + vector search\n     *\n     * @param string $query Search query text\n     * @param string $collection Qdrant collection name\n     * @param int $limit Maximum results to return\n     * @param string $embeddingModel Ollama model for embeddings\n     * @return array Search results with scores and payloads\n     *\/\n    public function search(\n        string $query,\n        string $collection = 'documents',\n        int $limit = 10,\n        string $embeddingModel = 'mxbai-embed-large'\n    ): array {\n        \/\/ Generate embedding for query\n        $embedding = $this->ollama->getEmbedding($query, $embeddingModel);\n\n        if (empty($embedding)) {\n            return [];\n        }\n\n        \/\/ Search in Qdrant\n        return $this->qdrant->search($embedding, $collection, $limit);\n    }\n\n    \/**\n     * Check if both services are available\n     *\/\n    public function isAvailable(): bool\n    {\n        return $this->ollama->isAvailable() && $this->qdrant->isAvailable();\n    }\n\n    \/**\n     * Get embedding for text (useful for debugging\/testing)\n     *\/\n    public function getEmbedding(string $text, string $model = 'mxbai-embed-large'): array\n    {\n        return $this->ollama->getEmbedding($text, $model);\n    }\n}\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/dev.campus.systemische-tools.de\/src\/Infrastructure\/AI\/VectorSearchService.php",
        "content": "<?php\n\nnamespace Infrastructure\\AI;\n\n\/**\n * VectorSearchService - Unified semantic search interface\n *\n * Wraps OllamaService (embeddings) and QdrantService (vector search)\n * for consistent vector search across the application.\n *\/\nclass VectorSearchService\n{\n    private OllamaService $ollama;\n    private QdrantService $qdrant;\n\n    public function __construct(?OllamaService $ollama = null, ?QdrantService $qdrant = null)\n    {\n        $this->ollama = $ollama ?? new OllamaService();\n        $this->qdrant = $qdrant ?? new QdrantService();\n    }\n\n    \/**\n     * Perform semantic search using embedding + vector search\n     *\n     * @param string $query Search query text\n     * @param string $collection Qdrant collection name\n     * @param int $limit Maximum results to return\n     * @param string $embeddingModel Ollama model for embeddings\n     * @return array Search results with scores and payloads\n     *\/\n    public function search(\n        string $query,\n        string $collection = 'documents',\n        int $limit = 10,\n        string $embeddingModel = 'mxbai-embed-large'\n    ): array {\n        \/\/ Generate embedding for query\n        $embedding = $this->ollama->getEmbedding($query, $embeddingModel);\n\n        if (empty($embedding)) {\n            return [];\n        }\n\n        \/\/ Search in Qdrant\n        return $this->qdrant->search($embedding, $collection, $limit);\n    }\n\n    \/**\n     * Check if both services are available\n     *\/\n    public function isAvailable(): bool\n    {\n        return $this->ollama->isAvailable() && $this->qdrant->isAvailable();\n    }\n\n    \/**\n     * Get embedding for text (useful for debugging\/testing)\n     *\/\n    public function getEmbedding(string $text, string $model = 'mxbai-embed-large'): array\n    {\n        return $this->ollama->getEmbedding($text, $model);\n    }\n}\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →