Protokoll #25031

ID25031
Zeitstempel2025-12-28 01:57:20.825977
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,054 (Input: 23, Output: 2,031)
Dauer100 ms
Request-Zeit2025-12-28 01:57:20.825977
Response-Zeit2025-12-28 01:57:20.926126

Request

{
    "event": "PreToolUse",
    "tool_name": "mcp__mcp-tasks__tasks_get",
    "tool_input": {
        "id": 497
    }
}

Response

{
    "tool_response": [
        {
            "type": "text",
            "text": "{\n  \"success\": true,\n  \"task\": {\n    \"id\": 497,\n    \"uuid\": \"b265c524-ca27-4dbf-9cde-d94f594464aa\",\n    \"title\": \"5\/6 Python-Executor: Implementierung der 6 neuen step_types\",\n    \"description\": \"## Ziel\\nPython-Executor um 6 neue step_types erweitern.\\n\\n---\\n\\n## ⚠️ PFLICHT VOR ARBEIT\\n\\n### 1. CLAUDE.md lesen\\n```bash\\ncat \/var\/www\/CLAUDE.md\\n```\\nWichtig: Constants-Pflicht (`from constants import *`)\\n\\n### 2. Bestehenden Python-Code analysieren\\n```bash\\nls -la \/opt\/scripts\/pipeline\/\\ncat \/opt\/scripts\/pipeline\/executor.py\\ncat \/opt\/scripts\/pipeline\/steps\/__init__.py\\n```\\n\\n### 3. Bestehende Step-Implementierungen studieren\\n```bash\\ncat \/opt\/scripts\/pipeline\/steps\/extract.py\\ncat \/opt\/scripts\/pipeline\/steps\/entity.py\\n```\\n\\n---\\n\\n## Code-Prinzipien\\n\\n| Prinzip | Anwendung |\\n|---------|-----------|\\n| **DRY** | Basis-Klasse für LLM-Steps |\\n| **KISS** | Ein Step = eine Funktion |\\n| **SRP** | Analyse und Store getrennt |\\n| **SOLID** | Interface für Step-Contract |\\n| **Constants** | `from constants import OLLAMA_TIMEOUT, LLM_TIMEOUT` |\\n\\n---\\n\\n## Neue Step-Implementierungen\\n\\n### Datei: \/opt\/scripts\/pipeline\/steps\/semantic.py\\n\\n```python\\n\\\"\\\"\\\"Textsemantik und Wissenssemantik Steps.\\\"\\\"\\\"\\nfrom constants import LLM_TIMEOUT, DEFAULT_LIMIT\\nimport ollama\\nimport json\\n\\ndef step_duplicate_check(doc_data: dict, config: dict) -> dict:\\n    \\\"\\\"\\\"Prüft auf Duplikate via Content-Hash.\\\"\\\"\\\"\\n    content_hash = doc_data.get('content_hash')\\n    if not content_hash:\\n        return {'status': 'skip', 'reason': 'no_hash'}\\n    \\n    # Via MCP-DB prüfen (kein direkter SQL!)\\n    existing = db.select(\\n        f\\\"SELECT id FROM documents WHERE content_hash = '{content_hash}' AND id != {doc_data['id']}\\\",\\n        database='ki_content'\\n    )\\n    \\n    if existing:\\n        return {\\n            'status': 'abort',\\n            'reason': 'duplicate',\\n            'duplicate_id': existing[0]['id']\\n        }\\n    return {'status': 'ok'}\\n\\n\\ndef step_text_semantic_analyze(chunks: list, config: dict) -> list:\\n    \\\"\\\"\\\"Analysiert WIE etwas gesagt wird.\\\"\\\"\\\"\\n    model = config.get('model', 'mistral')\\n    \\n    prompt = '''Analysiere den Text semantisch. Antworte NUR mit JSON:\\n{\\n  \\\"statement_form\\\": \\\"assertion|question|command|conditional\\\",\\n  \\\"intent\\\": \\\"explain|argue|define|compare|exemplify|warn|instruct\\\",\\n  \\\"frame\\\": \\\"theoretical|practical|historical|methodological|critical\\\",\\n  \\\"is_negated\\\": false,\\n  \\\"discourse_role\\\": \\\"thesis|evidence|example|counter|summary|definition\\\"\\n}\\n\\nText: {content}'''\\n    \\n    for chunk in chunks:\\n        response = ollama.generate(\\n            model=model,\\n            prompt=prompt.format(content=chunk['content']),\\n            options={'timeout': LLM_TIMEOUT}\\n        )\\n        chunk['text_semantics'] = json.loads(response['response'])\\n    \\n    return chunks\\n\\n\\ndef step_text_semantic_store(chunks: list, config: dict) -> dict:\\n    \\\"\\\"\\\"Speichert Textsemantik in DB.\\\"\\\"\\\"\\n    stored = 0\\n    for chunk in chunks:\\n        if 'text_semantics' not in chunk:\\n            continue\\n        sem = chunk['text_semantics']\\n        db.insert('chunk_text_semantics', {\\n            'chunk_id': chunk['id'],\\n            'statement_form': sem['statement_form'],\\n            'intent': sem.get('intent'),\\n            'frame': sem.get('frame'),\\n            'is_negated': sem.get('is_negated', False),\\n            'discourse_role': sem.get('discourse_role'),\\n            'model_used': config.get('model', 'mistral')\\n        }, database='ki_content')\\n        stored += 1\\n    return {'stored': stored}\\n\\n\\ndef step_knowledge_semantic_analyze(entities: list, config: dict) -> list:\\n    \\\"\\\"\\\"Analysiert WAS Entitäten BEDEUTEN.\\\"\\\"\\\"\\n    model = config.get('model', 'mistral')\\n    \\n    prompt = '''Analysiere die Bedeutung dieser Entität im Kontext. Antworte NUR mit JSON:\\n{\\n  \\\"semantic_role\\\": \\\"agent|patient|instrument|location|cause|effect\\\",\\n  \\\"properties\\\": {\\\"key\\\": \\\"value\\\"},\\n  \\\"functional_category\\\": \\\"method|tool|concept|actor|outcome|process\\\",\\n  \\\"context_meaning\\\": \\\"Kurze Erklärung der Bedeutung\\\"\\n}\\n\\nEntität: {name} (Typ: {type})\\nKontext: {context}'''\\n    \\n    for entity in entities:\\n        response = ollama.generate(\\n            model=model,\\n            prompt=prompt.format(\\n                name=entity['name'],\\n                type=entity['type'],\\n                context=entity.get('context', '')\\n            ),\\n            options={'timeout': LLM_TIMEOUT}\\n        )\\n        entity['knowledge_semantics'] = json.loads(response['response'])\\n    \\n    return entities\\n\\n\\ndef step_knowledge_semantic_store(entities: list, config: dict) -> dict:\\n    \\\"\\\"\\\"Speichert Wissenssemantik in DB.\\\"\\\"\\\"\\n    stored = 0\\n    for entity in entities:\\n        if 'knowledge_semantics' not in entity:\\n            continue\\n        sem = entity['knowledge_semantics']\\n        db.insert('entity_knowledge_semantics', {\\n            'entity_id': entity['id'],\\n            'chunk_id': entity['chunk_id'],\\n            'semantic_role': sem.get('semantic_role'),\\n            'properties': json.dumps(sem.get('properties', {})),\\n            'functional_category': sem.get('functional_category'),\\n            'context_meaning': sem.get('context_meaning'),\\n            'model_used': config.get('model', 'mistral')\\n        }, database='ki_content')\\n        stored += 1\\n    return {'stored': stored}\\n\\n\\ndef step_ontology_store(classifications: list, config: dict) -> dict:\\n    \\\"\\\"\\\"Speichert Ontologie-Klassifikationen.\\\"\\\"\\\"\\n    stored = 0\\n    for cls in classifications:\\n        db.insert('ontology_classes', {\\n            'entity_id': cls['entity_id'],\\n            'class_name': cls['class_name'],\\n            'parent_class': cls.get('parent_class'),\\n            'confidence': cls.get('confidence', 1.0)\\n        }, database='ki_content')\\n        stored += 1\\n    return {'stored': stored}\\n```\\n\\n### Step-Registry erweitern\\n\\n```python\\n# In \/opt\/scripts\/pipeline\/steps\/__init__.py\\nfrom .semantic import (\\n    step_duplicate_check,\\n    step_text_semantic_analyze,\\n    step_text_semantic_store,\\n    step_knowledge_semantic_analyze,\\n    step_knowledge_semantic_store,\\n    step_ontology_store,\\n)\\n\\nSTEP_REGISTRY = {\\n    # ... bestehende Steps ...\\n    'duplicate_check': step_duplicate_check,\\n    'text_semantic_analyze': step_text_semantic_analyze,\\n    'text_semantic_store': step_text_semantic_store,\\n    'knowledge_semantic_analyze': step_knowledge_semantic_analyze,\\n    'knowledge_semantic_store': step_knowledge_semantic_store,\\n    'ontology_store': step_ontology_store,\\n}\\n```\\n\\n---\\n\\n## Qualitätssicherung\\n\\n```bash\\n# Syntax prüfen\\npython3 -m py_compile \/opt\/scripts\/pipeline\/steps\/semantic.py\\n\\n# Imports testen\\ncd \/opt\/scripts\/pipeline && python3 -c \\\"from steps.semantic import *; print('OK')\\\"\\n\\n# Ruff Check\\n\/opt\/scripts\/pipeline\/venv\/bin\/ruff check steps\/semantic.py\\n```\\n\\n---\\n\\n## Akzeptanzkriterien\\n- [ ] CLAUDE.md gelesen\\n- [ ] Bestehender Code analysiert (DRY-Prüfung)\\n- [ ] Constants importiert (keine Magic Numbers)\\n- [ ] 6 neue Step-Funktionen implementiert\\n- [ ] Step-Registry erweitert\\n- [ ] Syntax-Check bestanden\\n- [ ] Ruff-Check bestanden\",\n    \"type\": \"ai_task\",\n    \"status\": \"pending\",\n    \"created_by\": \"mcp-tasks\",\n    \"created_by_type\": \"ai\",\n    \"parent_task_id\": 492,\n    \"due_date\": null,\n    \"created_at\": \"2025-12-28T01:33:12.736956\",\n    \"updated_at\": \"2025-12-28T01:41:04.310610\",\n    \"completed_at\": null,\n    \"metadata\": {}\n  },\n  \"assignments\": [],\n  \"results\": []\n}"
        }
    ]
}
← Vorheriger Zur Liste Nächster →