Protokoll #24922

ID24922
Zeitstempel2025-12-28 01:33:12.557893
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,664 (Input: 1,240, Output: 1,424)
Dauer421 ms
Request-Zeit2025-12-28 01:33:12.557893
Response-Zeit2025-12-28 01:33:12.979043

Request

{
    "event": "PreToolUse",
    "tool_name": "mcp__mcp-tasks__tasks_create",
    "tool_input": {
        "title": "5\/6 Python-Executor: Implementierung der 6 neuen step_types",
        "description": "## Ziel\nPython-Executor in \/opt\/scripts\/pipeline erweitern um die 6 neuen step_types.\n\n## Neue Step-Types zu implementieren\n\n### 1. duplicate_check\n```python\ndef step_duplicate_check(doc_data, config):\n    \"\"\"Prüft auf Duplikate via Content-Hash.\"\"\"\n    content_hash = doc_data.get('content_hash')\n    if not content_hash:\n        return {'status': 'skip', 'reason': 'no_hash'}\n    \n    # Query: SELECT id FROM documents WHERE content_hash = ? AND id != ?\n    existing = db.query(...)\n    if existing:\n        return {\n            'status': 'abort',  # WICHTIG: Pipeline abbrechen!\n            'reason': 'duplicate',\n            'duplicate_id': existing['id']\n        }\n    return {'status': 'ok'}\n```\n\n### 2. text_semantic_analyze (LLM)\n```python\ndef step_text_semantic_analyze(chunks, config):\n    \"\"\"Analysiert WIE etwas gesagt wird.\"\"\"\n    prompt = '''Analysiere den folgenden Text semantisch:\n    \n    {chunk_content}\n    \n    Antworte im JSON-Format:\n    {\n      \"statement_form\": \"assertion|question|command|hypothesis\",\n      \"intent\": \"informing|persuading|instructing|evaluating\",\n      \"frame\": \"theoretical|practical|normative\",\n      \"is_negated\": true|false,\n      \"discourse_role\": \"definition|example|argument|conclusion\"\n    }'''\n    \n    for chunk in chunks:\n        response = ollama.generate(model=config['model'], prompt=prompt.format(...))\n        chunk['text_semantics'] = json.loads(response)\n    return chunks\n```\n\n### 3. text_semantic_store\n```python\ndef step_text_semantic_store(chunks, config):\n    \"\"\"Speichert Textsemantik in DB.\"\"\"\n    for chunk in chunks:\n        if 'text_semantics' not in chunk:\n            continue\n        sem = chunk['text_semantics']\n        db.insert('chunk_text_semantics', {\n            'chunk_id': chunk['id'],\n            'statement_form': sem['statement_form'],\n            'intent': sem['intent'],\n            'frame': sem['frame'],\n            'is_negated': sem['is_negated'],\n            'discourse_role': sem['discourse_role']\n        })\n    return {'stored': len(chunks)}\n```\n\n### 4. knowledge_semantic_analyze (LLM)\n```python\ndef step_knowledge_semantic_analyze(entities, config):\n    \"\"\"Analysiert WAS Entitäten BEDEUTEN.\"\"\"\n    prompt = '''Analysiere die Bedeutung dieser Entität im Kontext:\n    \n    Entität: {entity_name} (Typ: {entity_type})\n    Kontext: {chunk_content}\n    \n    Antworte im JSON-Format:\n    {\n      \"semantic_role\": \"agent|patient|instrument|location|source|goal\",\n      \"properties\": {\n        \"temporal\": \"past|present|future|atemporal\",\n        \"spatial\": \"local|regional|global|abstract\",\n        \"modal\": \"factual|possible|necessary|hypothetical\"\n      },\n      \"functional_category\": \"process|state|event|quality\",\n      \"context_meaning\": \"Kurze Erklärung der Bedeutung im Kontext\"\n    }'''\n    \n    for entity in entities:\n        response = ollama.generate(...)\n        entity['knowledge_semantics'] = json.loads(response)\n    return entities\n```\n\n### 5. knowledge_semantic_store\n```python\ndef step_knowledge_semantic_store(entities, config):\n    \"\"\"Speichert Wissenssemantik in DB.\"\"\"\n    for entity in entities:\n        if 'knowledge_semantics' not in entity:\n            continue\n        sem = entity['knowledge_semantics']\n        db.insert('entity_knowledge_semantics', {\n            'entity_id': entity['id'],\n            'chunk_id': entity['chunk_id'],\n            'semantic_role': sem['semantic_role'],\n            'properties': json.dumps(sem['properties']),\n            'functional_category': sem['functional_category'],\n            'context_meaning': sem['context_meaning']\n        })\n    return {'stored': len(entities)}\n```\n\n### 6. ontology_store\n```python\ndef step_ontology_store(classifications, config):\n    \"\"\"Speichert Ontologie-Klassifikationen.\"\"\"\n    for cls in classifications:\n        db.insert('ontology_classes', {\n            'entity_id': cls['entity_id'],\n            'class_name': cls['class_name'],\n            'parent_class': cls.get('parent_class'),\n            'confidence': cls.get('confidence', 1.0)\n        })\n    return {'stored': len(classifications)}\n```\n\n## Dateien zu bearbeiten\n- `\/opt\/scripts\/pipeline\/steps\/__init__.py` - Step-Registry\n- `\/opt\/scripts\/pipeline\/steps\/semantic.py` - Neue Datei für Semantik-Steps\n- `\/opt\/scripts\/pipeline\/steps\/knowledge.py` - Neue Datei für Wissens-Steps\n- `\/opt\/scripts\/pipeline\/executor.py` - Step-Dispatcher erweitern\n\n## Abhängigkeiten\n- Task #493: DB-Tabellen müssen existieren\n- Task #494: ENUMs müssen existieren\n- LLM-Modell: mistral oder llama3",
        "type": "ai_task",
        "parent_task_id": 492
    }
}

Response

{
    "tool_response": [
        {
            "type": "text",
            "text": "{\n  \"success\": true,\n  \"task\": {\n    \"id\": 497,\n    \"uuid\": \"b265c524-ca27-4dbf-9cde-d94f594464aa\",\n    \"title\": \"5\/6 Python-Executor: Implementierung der 6 neuen step_types\",\n    \"description\": \"## Ziel\\nPython-Executor in \/opt\/scripts\/pipeline erweitern um die 6 neuen step_types.\\n\\n## Neue Step-Types zu implementieren\\n\\n### 1. duplicate_check\\n```python\\ndef step_duplicate_check(doc_data, config):\\n    \\\"\\\"\\\"Prüft auf Duplikate via Content-Hash.\\\"\\\"\\\"\\n    content_hash = doc_data.get('content_hash')\\n    if not content_hash:\\n        return {'status': 'skip', 'reason': 'no_hash'}\\n    \\n    # Query: SELECT id FROM documents WHERE content_hash = ? AND id != ?\\n    existing = db.query(...)\\n    if existing:\\n        return {\\n            'status': 'abort',  # WICHTIG: Pipeline abbrechen!\\n            'reason': 'duplicate',\\n            'duplicate_id': existing['id']\\n        }\\n    return {'status': 'ok'}\\n```\\n\\n### 2. text_semantic_analyze (LLM)\\n```python\\ndef step_text_semantic_analyze(chunks, config):\\n    \\\"\\\"\\\"Analysiert WIE etwas gesagt wird.\\\"\\\"\\\"\\n    prompt = '''Analysiere den folgenden Text semantisch:\\n    \\n    {chunk_content}\\n    \\n    Antworte im JSON-Format:\\n    {\\n      \\\"statement_form\\\": \\\"assertion|question|command|hypothesis\\\",\\n      \\\"intent\\\": \\\"informing|persuading|instructing|evaluating\\\",\\n      \\\"frame\\\": \\\"theoretical|practical|normative\\\",\\n      \\\"is_negated\\\": true|false,\\n      \\\"discourse_role\\\": \\\"definition|example|argument|conclusion\\\"\\n    }'''\\n    \\n    for chunk in chunks:\\n        response = ollama.generate(model=config['model'], prompt=prompt.format(...))\\n        chunk['text_semantics'] = json.loads(response)\\n    return chunks\\n```\\n\\n### 3. text_semantic_store\\n```python\\ndef step_text_semantic_store(chunks, config):\\n    \\\"\\\"\\\"Speichert Textsemantik in DB.\\\"\\\"\\\"\\n    for chunk in chunks:\\n        if 'text_semantics' not in chunk:\\n            continue\\n        sem = chunk['text_semantics']\\n        db.insert('chunk_text_semantics', {\\n            'chunk_id': chunk['id'],\\n            'statement_form': sem['statement_form'],\\n            'intent': sem['intent'],\\n            'frame': sem['frame'],\\n            'is_negated': sem['is_negated'],\\n            'discourse_role': sem['discourse_role']\\n        })\\n    return {'stored': len(chunks)}\\n```\\n\\n### 4. knowledge_semantic_analyze (LLM)\\n```python\\ndef step_knowledge_semantic_analyze(entities, config):\\n    \\\"\\\"\\\"Analysiert WAS Entitäten BEDEUTEN.\\\"\\\"\\\"\\n    prompt = '''Analysiere die Bedeutung dieser Entität im Kontext:\\n    \\n    Entität: {entity_name} (Typ: {entity_type})\\n    Kontext: {chunk_content}\\n    \\n    Antworte im JSON-Format:\\n    {\\n      \\\"semantic_role\\\": \\\"agent|patient|instrument|location|source|goal\\\",\\n      \\\"properties\\\": {\\n        \\\"temporal\\\": \\\"past|present|future|atemporal\\\",\\n        \\\"spatial\\\": \\\"local|regional|global|abstract\\\",\\n        \\\"modal\\\": \\\"factual|possible|necessary|hypothetical\\\"\\n      },\\n      \\\"functional_category\\\": \\\"process|state|event|quality\\\",\\n      \\\"context_meaning\\\": \\\"Kurze Erklärung der Bedeutung im Kontext\\\"\\n    }'''\\n    \\n    for entity in entities:\\n        response = ollama.generate(...)\\n        entity['knowledge_semantics'] = json.loads(response)\\n    return entities\\n```\\n\\n### 5. knowledge_semantic_store\\n```python\\ndef step_knowledge_semantic_store(entities, config):\\n    \\\"\\\"\\\"Speichert Wissenssemantik in DB.\\\"\\\"\\\"\\n    for entity in entities:\\n        if 'knowledge_semantics' not in entity:\\n            continue\\n        sem = entity['knowledge_semantics']\\n        db.insert('entity_knowledge_semantics', {\\n            'entity_id': entity['id'],\\n            'chunk_id': entity['chunk_id'],\\n            'semantic_role': sem['semantic_role'],\\n            'properties': json.dumps(sem['properties']),\\n            'functional_category': sem['functional_category'],\\n            'context_meaning': sem['context_meaning']\\n        })\\n    return {'stored': len(entities)}\\n```\\n\\n### 6. ontology_store\\n```python\\ndef step_ontology_store(classifications, config):\\n    \\\"\\\"\\\"Speichert Ontologie-Klassifikationen.\\\"\\\"\\\"\\n    for cls in classifications:\\n        db.insert('ontology_classes', {\\n            'entity_id': cls['entity_id'],\\n            'class_name': cls['class_name'],\\n            'parent_class': cls.get('parent_class'),\\n            'confidence': cls.get('confidence', 1.0)\\n        })\\n    return {'stored': len(classifications)}\\n```\\n\\n## Dateien zu bearbeiten\\n- `\/opt\/scripts\/pipeline\/steps\/__init__.py` - Step-Registry\\n- `\/opt\/scripts\/pipeline\/steps\/semantic.py` - Neue Datei für Semantik-Steps\\n- `\/opt\/scripts\/pipeline\/steps\/knowledge.py` - Neue Datei für Wissens-Steps\\n- `\/opt\/scripts\/pipeline\/executor.py` - Step-Dispatcher erweitern\\n\\n## Abhängigkeiten\\n- Task #493: DB-Tabellen müssen existieren\\n- Task #494: ENUMs müssen existieren\\n- LLM-Modell: mistral oder llama3\",\n    \"type\": \"ai_task\",\n    \"status\": \"pending\",\n    \"created_by\": \"mcp-tasks\",\n    \"created_by_type\": \"ai\",\n    \"parent_task_id\": 492,\n    \"due_date\": null,\n    \"created_at\": \"2025-12-28T01:33:12.736956\",\n    \"updated_at\": \"2025-12-28T01:33:12.736959\",\n    \"completed_at\": null,\n    \"metadata\": {}\n  },\n  \"message\": \"Task #497 created\"\n}"
        }
    ]
}
← Vorheriger Zur Liste Nächster →