{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/scripts\/pipeline\/analyzers\/entity_extractor.py",
"offset": 245,
"limit": 20
}
}
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/scripts\/pipeline\/analyzers\/entity_extractor.py",
"content": " result2 = json.loads(resp2)\n categorized = result2.get(\"kategorisiert\", [])\n except json.JSONDecodeError:\n db.log(\"WARNING\", \"Failed to parse Pass 2 JSON\")\n # Fallback: return uncategorized entities\n return [{\"name\": e, \"type\": \"CONCEPT\", \"description\": None} for e in valid_entities]\n\n protokoll.log_llm_call(\n request=f\"[entity_extraction_pass2] categorize {len(valid_entities)} entities\",\n response=resp2[:1000],\n model_name=f\"ollama:{model}\",\n tokens_input=tok_in2,\n tokens_output=tok_out2,\n duration_ms=dur2,\n status=\"completed\",\n )\n\n # Normalize output (validate types against DB)\n valid_types = _get_valid_type_codes()\n entities = []",
"numLines": 20,
"startLine": 245,
"totalLines": 504
}
}
}