Protokoll #24802

ID24802
Zeitstempel2025-12-28 01:15:02.539097
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens249 (Input: 34, Output: 215)
Dauer101 ms
Request-Zeit2025-12-28 01:15:02.539097
Response-Zeit2025-12-28 01:15:02.639658

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/chat.py",
        "offset": 155,
        "limit": 15
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/scripts\/pipeline\/chat.py",
            "content": "#!\/usr\/bin\/env python3\n\"\"\"\nRAG-Chat für KI-System\nSemantische Suche + LLM-Antwort mit Quellenangabe.\n\nUsage:\n    python chat.py \"Deine Frage hier\"\n    python chat.py  # Interaktiver Modus\n\"\"\"\n\nimport sys\n\nimport requests\n\nfrom config import ANTHROPIC_API_KEY, ANTHROPIC_MODEL, EMBEDDING_MODEL, OLLAMA_HOST, QDRANT_HOST, QDRANT_PORT\nfrom constants import OLLAMA_TIMEOUT\n\n\ndef get_embedding(text):\n    \"\"\"Get embedding from Ollama.\"\"\"\n    response = requests.post(\n        f\"{OLLAMA_HOST}\/api\/embeddings\", json={\"model\": EMBEDDING_MODEL, \"prompt\": text}, timeout=OLLAMA_TIMEOUT\n    )\n    response.raise_for_status()\n    return response.json().get(\"embedding\")",
            "numLines": 25,
            "startLine": 1,
            "totalLines": 222
        }
    }
}
← Vorheriger Zur Liste Nächster →