Protokoll #24168

ID24168
Zeitstempel2025-12-27 15:58:25.928108
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens966 (Input: 35, Output: 931)
Dauer99 ms
Request-Zeit2025-12-27 15:58:25.928108
Response-Zeit2025-12-27 15:58:26.026683

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/pipeline.py",
        "offset": 100,
        "limit": 100
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/scripts\/pipeline\/pipeline.py",
            "content": "    # Step 8: Embeddings (Layer 3 - Document becomes searchable)\n    embedded = embed_step.execute(chunks, doc_id, file_name, file_path)\n\n    # Document is now searchable - update status to \"embedded\"\n    load_step.update_document_status(doc_id, \"embedded\")\n\n    if progress:\n        progress.add_log(f\"Layer 3 fertig: {file_name} ist jetzt suchbar\")\n\n    # Check if cancelled after embedding\n    if progress and progress.is_cancelled():\n        return \"cancelled\", len(chunks), embedded\n\n    # Step 9: Semantic analysis (Layer 4 - Optional\/Async)\n    semantic_step = SemanticStep(db, progress)\n    full_text = extract_step.get_full_text_from_extraction(extraction)\n\n    if SEMANTIC_SYNC:\n        # Run semantic analysis synchronously\n        try:\n            semantic_step.execute(doc_id, full_text, use_anthropic=SEMANTIC_USE_ANTHROPIC)\n            # Update to done only after semantic completes\n            load_step.update_document_status(doc_id, \"done\")\n        except Exception as e:\n            # Semantic failed but document is still searchable\n            db.log(\"WARNING\", f\"Semantic analysis failed for {file_name}: {e}\")\n            if progress:\n                progress.add_log(f\"Semantik-Fehler (Dokument bleibt suchbar): {str(e)[:50]}\")\n    elif SEMANTIC_AUTO_QUEUE:\n        # Queue for async processing\n        semantic_step.queue(doc_id, priority=5)\n        load_step.update_document_status(doc_id, \"done\")\n        if progress:\n            progress.add_log(f\"Semantik in Queue: {file_name}\")\n    else:\n        # No semantic analysis\n        load_step.update_document_status(doc_id, \"done\")\n\n    if progress:\n        progress.add_log(f\"Fertig: {file_name}\")\n\n    return True, len(chunks), embedded\n\n\ndef process_queue():\n    \"\"\"Process items from the queue.\"\"\"\n    items = db.get_pending_queue_items(limit=10)\n    db.log(\"INFO\", f\"Found {len(items)} items in queue\")\n\n    for item in items:\n        queue_id = item[\"id\"]\n        file_path = item[\"file_path\"]\n        retry_count = item[\"retry_count\"]\n\n        if retry_count >= MAX_RETRIES:\n            db.update_queue_status(queue_id, \"failed\", \"Max retries exceeded\")\n            continue\n\n        db.update_queue_status(queue_id, \"processing\")\n\n        try:\n            success = process_file(file_path)\n            if success:\n                db.update_queue_status(queue_id, \"completed\")\n            else:\n                raise Exception(\"Processing returned False\")\n        except Exception as e:\n            error_msg = str(e)\n            db.update_queue_status(queue_id, \"pending\", error_msg)\n\n            # Exponential backoff\n            wait_time = RETRY_BACKOFF_BASE ** (retry_count + 1)\n            db.log(\"INFO\", f\"Retry {retry_count + 1} in {wait_time}s: {file_path}\")\n            time.sleep(wait_time)\n\n\ndef run_scan():\n    \"\"\"Scan for new documents.\"\"\"\n    files = scan_directory()\n    print(f\"Found {len(files)} files\")\n\n    if files:\n        queued = queue_files(files)\n        print(f\"Queued {queued} files\")\n\n    return files\n\n\ndef run_full_pipeline(run_id=None, pipeline_id=None):\n    \"\"\"Run complete pipeline: scan → process → embed.\"\"\"\n    progress = PipelineProgress(run_id) if run_id else None\n\n    print(\"=\" * 50)\n    print(\"KI-System Pipeline - Full Run\")\n    if run_id:\n        print(f\"Run ID: {run_id}, Pipeline ID: {pipeline_id}\")\n    print(\"=\" * 50)\n\n    try:\n        # Phase 1: Scan",
            "numLines": 100,
            "startLine": 100,
            "totalLines": 455
        }
    }
}
← Vorheriger Zur Liste Nächster →