Protokoll #24162

ID24162
Zeitstempel2025-12-27 15:58:13.519098
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens742 (Input: 46, Output: 696)
Dauer437 ms
Request-Zeit2025-12-27 15:58:13.519098
Response-Zeit2025-12-27 15:58:13.956437

Request

{
    "event": "PreToolUse",
    "tool_name": "Grep",
    "tool_input": {
        "pattern": "def step_|def run_step|entity_extract",
        "path": "\/var\/www\/scripts\/pipeline",
        "output_mode": "content",
        "-n": true
    }
}

Response

{
    "tool_response": {
        "mode": "content",
        "numFiles": 0,
        "filenames": [],
        "content": "knowledge\/__init__.py:17:from .entity_extractor import EntityExtractor\nknowledge\/analyzer.py:9:from .entity_extractor import EntityExtractor\nknowledge\/analyzer.py:42:        self.entity_extractor = EntityExtractor(self.llm, self.storage.store)\nknowledge\/analyzer.py:49:        return self.entity_extractor.extract_entities(text, level, source_id)\ndb.py:286:            use_case: The use case (entity_extraction, semantic_analysis, statement_extraction, etc.)\ndb.py:687:            pipeline_step: Optional step name (e.g., 'entity_extract')\nconfig\/entity_extraction_baseline.yaml:69:  entity_extraction:\nconfig\/entity_extraction_baseline.yaml:70:    name: \"entity_extraction\"\nconfig\/entity_extraction_baseline.yaml:71:    use_case: \"entity_extraction\"\nanalyzers\/__init__.py:9:from .entity_extractor import extract_entities_anthropic, extract_entities_ollama, find_entity_by_name, store_entities\nanalyzers\/entity_extractor.py:194:    pass1_template = db.get_prompt(\"entity_extraction_pass1\")\nanalyzers\/entity_extractor.py:195:    pass2_template = db.get_prompt(\"entity_extraction_pass2\")\nanalyzers\/entity_extractor.py:227:            request=f\"[entity_extraction_pass1] {len(valid_entities)} entities\",\nanalyzers\/entity_extractor.py:252:            request=f\"[entity_extraction_pass2] categorize {len(valid_entities)} entities\",\nanalyzers\/entity_extractor.py:290:    prompt_data = db.get_prompt_by_use_case(\"entity_extraction\")\nanalyzers\/entity_extractor.py:294:        db.log(\"WARNING\", \"entity_extraction prompt not found in DB, using fallback\")\nanalyzers\/entity_extractor.py:310:            request=f\"[entity_extraction] {prompt[:500]}...\",\nanalyzers\/entity_extractor.py:332:    prompt_data = db.get_prompt_by_use_case(\"entity_extraction\")\nanalyzers\/entity_extractor.py:365:            request=f\"[entity_extraction] {prompt[:500]}...\",\nanalyzers\/entity_extractor.py:382:            request=f\"[entity_extraction] {prompt[:500]}...\",\nanalyzers\/entity_extractor.py:450:                    pipeline_step=\"entity_extract\",\nanalyzers\/statement_analyzer.py:18:from .entity_extractor import find_entity_by_name\nanalyzers\/document_analyzer.py:13:from .entity_extractor import extract_entities_anthropic, extract_entities_ollama, find_entity_by_name, store_entities\nrun_demo.py:18:from analyzers.entity_extractor import extract_entities_ollama, store_entities, _build_prompt_from_yaml\nrun_demo.py:124:    prompt_data = db.get_prompt_by_use_case(\"entity_extraction\")\nsemantic_chunk\/pipeline.py:24:        self.entity_extractor = EntityExtractor(self.llm)\nsemantic_chunk\/pipeline.py:49:        entities = self.entity_extractor.extract(text)",
        "numLines": 27
    }
}
← Vorheriger Zur Liste Nächster →