Protokoll #23939

ID23939
Zeitstempel2025-12-27 15:35:01.312254
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens300 (Input: 40, Output: 260)
Dauer94 ms
Request-Zeit2025-12-27 15:35:01.312254
Response-Zeit2025-12-27 15:35:01.406234

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/analyzers\/semantic_analyzer.py",
        "offset": 55,
        "limit": 25
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/scripts\/pipeline\/analyzers\/taxonomy_classifier.py",
            "content": "        else:\n            response = requests.post(\n                f\"{OLLAMA_HOST}\/api\/generate\",\n                json={\"model\": OLLAMA_CHAT_MODEL, \"prompt\": prompt, \"stream\": False, \"format\": \"json\"},\n                timeout=60,\n            )\n            response.raise_for_status()\n            data = response.json()\n            response_text = data.get(\"response\", \"{}\")\n            tokens_in = data.get(\"prompt_eval_count\", 0)\n            tokens_out = data.get(\"eval_count\", 0)\n            model_name = f\"ollama:{OLLAMA_CHAT_MODEL}\"\n\n        duration_ms = int((time.time() - start_time) * 1000)\n\n        protokoll.log_llm_call(\n            request=f\"[taxonomy_classification] {prompt[:500]}...\",\n            response=response_text[:2000],\n            model_name=model_name,\n            tokens_input=tokens_in,",
            "numLines": 20,
            "startLine": 55,
            "totalLines": 93
        }
    }
}
← Vorheriger Zur Liste Nächster →