{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/scripts\/pipeline\/analyzers\/semantic_analyzer.py",
"offset": 55,
"limit": 25
}
}
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/scripts\/pipeline\/analyzers\/taxonomy_classifier.py",
"content": " else:\n response = requests.post(\n f\"{OLLAMA_HOST}\/api\/generate\",\n json={\"model\": OLLAMA_CHAT_MODEL, \"prompt\": prompt, \"stream\": False, \"format\": \"json\"},\n timeout=60,\n )\n response.raise_for_status()\n data = response.json()\n response_text = data.get(\"response\", \"{}\")\n tokens_in = data.get(\"prompt_eval_count\", 0)\n tokens_out = data.get(\"eval_count\", 0)\n model_name = f\"ollama:{OLLAMA_CHAT_MODEL}\"\n\n duration_ms = int((time.time() - start_time) * 1000)\n\n protokoll.log_llm_call(\n request=f\"[taxonomy_classification] {prompt[:500]}...\",\n response=response_text[:2000],\n model_name=model_name,\n tokens_input=tokens_in,",
"numLines": 20,
"startLine": 55,
"totalLines": 93
}
}
}