Protokoll #23910
| ID | 23910 |
|---|---|
| Zeitstempel | 2025-12-27 15:32:50.704535 |
| Client | root |
| IP | Warning: Undefined array key "request_ip" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 Deprecated: htmlspecialchars(): Passing null to parameter #1 ($string) of type string is deprecated in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 |
| Modell | claude-sonnet-4-20250514 |
| Status | completed |
| Tokens | 431 (Input: 0, Output: 0) |
| Dauer | 85 ms |
| Request-Zeit | Warning: Undefined array key "request_timestamp" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 18 |
| Response-Zeit | - |
Warning: Undefined array key "error_message" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 22
Request
{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/scripts\/pipeline\/embed.py",
"limit": 50
}
}
Response
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/scripts\/pipeline\/embed.py",
"content": "\"\"\"\nEmbedding generation for KI-System Pipeline\nUses Ollama (mxbai-embed-large) for vector embeddings.\n\"\"\"\n\nimport json\nimport re\nimport uuid\n\nimport requests\n\nfrom config import EMBEDDING_DIMENSION, EMBEDDING_MODEL, OLLAMA_HOST, QDRANT_HOST, QDRANT_PORT\nfrom db import db\n\n# Max chars for mxbai-embed model (512 token context, varies by content)\n# Conservative limit to handle German compound words and special chars\nMAX_EMBED_CHARS = 800\n\n\ndef get_embedding(text):\n \"\"\"Get embedding vector from Ollama.\"\"\"\n # Skip empty content\n if not text or not text.strip():\n return None\n\n # Collapse consecutive dots\/periods (table of contents, etc.)\n text = re.sub(r\"\\.{3,}\", \"...\", text)\n\n # Truncate if too long for model context\n if len(text) > MAX_EMBED_CHARS:\n text = text[:MAX_EMBED_CHARS]\n\n try:\n response = requests.post(\n f\"{OLLAMA_HOST}\/api\/embeddings\",\n json={\"model\": EMBEDDING_MODEL, \"prompt\": text},\n timeout=60,\n )\n response.raise_for_status()\n data = response.json()\n return data.get(\"embedding\")\n except Exception as e:\n db.log(\"ERROR\", f\"Embedding generation failed: {e}\")\n return None\n\n\ndef store_in_qdrant(collection, point_id, vector, payload):\n \"\"\"Store embedding in Qdrant.\"\"\"\n try:\n response = requests.put(",
"numLines": 50,
"startLine": 1,
"totalLines": 205
}
}
}