Protokoll #19102

ID19102
Zeitstempel2025-12-26 23:40:14.123092
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens761 (Input: 31, Output: 730)
Dauer99 ms
Request-Zeit2025-12-26 23:40:14.123092
Response-Zeit2025-12-26 23:40:14.221818

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/vision.py",
        "limit": 100
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/scripts\/pipeline\/vision.py",
            "content": "#!\/usr\/bin\/env python3\n\"\"\"\nVision analysis module for KI-System Pipeline.\nExtracts PDF pages as images and analyzes them with vision models.\n\nUsage:\n    python vision.py <pdf_path>          # Analyze all pages\n    python vision.py <pdf_path> --page 1 # Analyze specific page\n\"\"\"\n\nimport base64\nimport os\nimport sys\nfrom pathlib import Path\n\nimport requests\n\nfrom config import OLLAMA_HOST\nfrom db import db\n\n# Default vision model (can be overridden by pipeline config)\nDEFAULT_VISION_MODEL = \"llama3.2-vision:11b\"\n\n# Image settings\nIMAGE_DPI = 150  # Balance between quality and size\nIMAGE_FORMAT = \"png\"\nMAX_IMAGE_SIZE_MB = 10\n\n\ndef pdf_to_images(file_path, dpi=IMAGE_DPI):\n    \"\"\"\n    Convert PDF pages to images.\n\n    Args:\n        file_path: Path to PDF file\n        dpi: Resolution for image extraction\n\n    Returns:\n        List of dicts with page_number, image_bytes, width, height\n    \"\"\"\n    import fitz  # PyMuPDF\n\n    doc = fitz.open(file_path)\n    pages = []\n\n    for page_num in range(len(doc)):\n        page = doc[page_num]\n\n        # Render page to image\n        mat = fitz.Matrix(dpi \/ 72, dpi \/ 72)  # 72 is default PDF DPI\n        pix = page.get_pixmap(matrix=mat)\n\n        # Convert to PNG bytes\n        img_bytes = pix.tobytes(IMAGE_FORMAT)\n\n        pages.append(\n            {\n                \"page_number\": page_num + 1,\n                \"image_bytes\": img_bytes,\n                \"width\": pix.width,\n                \"height\": pix.height,\n                \"size_kb\": len(img_bytes) \/ 1024,\n            }\n        )\n\n    doc.close()\n    return pages\n\n\ndef analyze_image_ollama(image_bytes, model=DEFAULT_VISION_MODEL, prompt=None):\n    \"\"\"\n    Analyze an image using Ollama vision model.\n\n    Args:\n        image_bytes: PNG\/JPEG image as bytes\n        model: Vision model name (e.g., minicpm-v:latest)\n        prompt: Custom prompt (default: document analysis prompt)\n\n    Returns:\n        dict with analysis results\n    \"\"\"\n    if prompt is None:\n        prompt = \"\"\"Analysiere diese Seite aus einem Schulungsdokument.\n\nBeschreibe strukturiert:\n1. **Überschriften\/Titel**: Welche Überschriften gibt es?\n2. **Hauptinhalt**: Worum geht es auf dieser Seite?\n3. **Visuelle Elemente**:\n   - Gibt es Bilder\/Fotos? Was zeigen sie?\n   - Gibt es Diagramme\/Charts? Was stellen sie dar?\n   - Gibt es Tabellen? Was enthalten sie?\n4. **Layout**: Wie ist die Seite aufgebaut (Spalten, Boxen, etc.)?\n5. **Besonderheiten**: Gibt es Hervorhebungen, Zitate oder Callouts?\n\nAntworte auf Deutsch und sei präzise.\"\"\"\n\n    # Encode image as base64\n    image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n\n    try:",
            "numLines": 100,
            "startLine": 1,
            "totalLines": 389
        }
    }
}
← Vorheriger Zur Liste Nächster →