Protokoll #15639

ID15639
Zeitstempel2025-12-25 16:56:05.032782
Clientroot
IP
Warning: Undefined array key "request_ip" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13

Deprecated: htmlspecialchars(): Passing null to parameter #1 ($string) of type string is deprecated in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,361 (Input: 0, Output: 0)
Dauer115 ms
Request-Zeit
Warning: Undefined array key "request_timestamp" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 18
Response-Zeit-

Warning: Undefined array key "error_message" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 22

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/step_transform.py",
        "content": "\"\"\"\nTransformation Step Module\nHandles chunking and semantic analysis of extracted content.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nimport json\n\nfrom analyze import analyze_document\nfrom chunk import chunk_by_structure\nfrom enrich import run_enrichment_step\nfrom vision import run_vision_step\n\n\nclass TransformationStep:\n    \"\"\"Step: Transform extracted content into chunks and analyze.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize transformation step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute_vision(self, doc_id, file_path, file_type):\n        \"\"\"\n        Execute vision analysis for PDFs.\n\n        Args:\n            doc_id: Document database ID\n            file_path: Path to file\n            file_type: File extension\n\n        Returns:\n            dict: Vision analysis result\n        \"\"\"\n        if file_type != \".pdf\":\n            return {\"success\": False, \"error\": \"Not a PDF\"}\n\n        if self.progress:\n            self.progress.update_step(\"vision\")\n            self.progress.add_log(\"Vision-Analyse gestartet...\")\n\n        self.db.log(\"INFO\", f\"Running vision analysis for document {doc_id}\")\n\n        vision_config = {\n            \"model\": \"llama3.2-vision:11b\",\n            \"store_images\": True,\n            \"detect_images\": True,\n            \"detect_charts\": True,\n            \"detect_tables\": True,\n        }\n\n        vision_result = run_vision_step(doc_id, file_path, vision_config, progress=self.progress)\n\n        if vision_result[\"success\"]:\n            self.db.log(\"INFO\", f\"Vision: {vision_result['pages_analyzed']}\/{vision_result['pages_total']} pages\")\n            if self.progress:\n                self.progress.add_log(f\"Vision: {vision_result['pages_analyzed']} Seiten analysiert\")\n        else:\n            self.db.log(\"WARNING\", f\"Vision analysis failed: {vision_result.get('error')}\")\n\n        return vision_result\n\n    def execute_chunking(self, extraction, total_pages=0):\n        \"\"\"\n        Chunk extracted content.\n\n        Args:\n            extraction: Extraction result dict\n            total_pages: Number of pages (for logging)\n\n        Returns:\n            list: Chunk dictionaries\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"chunk\")\n            if total_pages > 0:\n                self.progress.add_log(f\"Erstelle Chunks aus {total_pages} Seiten...\")\n            else:\n                self.progress.add_log(\"Erstelle Chunks...\")\n\n        chunks = chunk_by_structure(extraction)\n        self.db.log(\"INFO\", f\"Created {len(chunks)} chunks\")\n\n        if self.progress:\n            msg = f\"{len(chunks)} Chunks erstellt\"\n            if total_pages > 0:\n                msg += f\" (aus {total_pages} Seiten)\"\n            self.progress.add_log(msg)\n\n        return chunks\n\n    def execute_enrichment(self, doc_id, file_type):\n        \"\"\"\n        Enrich chunks with vision context (PDFs only).\n\n        Args:\n            doc_id: Document database ID\n            file_type: File extension\n\n        Returns:\n            dict: Enrichment result\n        \"\"\"\n        if file_type != \".pdf\":\n            return {\"success\": False, \"error\": \"Not a PDF\"}\n\n        if self.progress:\n            self.progress.update_step(\"enrich\")\n\n        self.db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n\n        enrich_result = run_enrichment_step(doc_id)\n\n        if enrich_result[\"success\"]:\n            self.db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks\")\n        else:\n            self.db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")\n\n        return enrich_result\n\n    def execute_analysis(self, doc_id, full_text):\n        \"\"\"\n        Execute semantic analysis on document.\n\n        Args:\n            doc_id: Document database ID\n            full_text: Full document text\n\n        Returns:\n            dict: Analysis result\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"analyze\")\n\n        analysis = analyze_document(doc_id, full_text, progress=self.progress)\n        self.db.log(\"INFO\", f\"Analysis complete: {analysis}\")\n\n        return analysis\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/scripts\/pipeline\/step_transform.py",
        "content": "\"\"\"\nTransformation Step Module\nHandles chunking and semantic analysis of extracted content.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nimport json\n\nfrom analyze import analyze_document\nfrom chunk import chunk_by_structure\nfrom enrich import run_enrichment_step\nfrom vision import run_vision_step\n\n\nclass TransformationStep:\n    \"\"\"Step: Transform extracted content into chunks and analyze.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize transformation step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute_vision(self, doc_id, file_path, file_type):\n        \"\"\"\n        Execute vision analysis for PDFs.\n\n        Args:\n            doc_id: Document database ID\n            file_path: Path to file\n            file_type: File extension\n\n        Returns:\n            dict: Vision analysis result\n        \"\"\"\n        if file_type != \".pdf\":\n            return {\"success\": False, \"error\": \"Not a PDF\"}\n\n        if self.progress:\n            self.progress.update_step(\"vision\")\n            self.progress.add_log(\"Vision-Analyse gestartet...\")\n\n        self.db.log(\"INFO\", f\"Running vision analysis for document {doc_id}\")\n\n        vision_config = {\n            \"model\": \"llama3.2-vision:11b\",\n            \"store_images\": True,\n            \"detect_images\": True,\n            \"detect_charts\": True,\n            \"detect_tables\": True,\n        }\n\n        vision_result = run_vision_step(doc_id, file_path, vision_config, progress=self.progress)\n\n        if vision_result[\"success\"]:\n            self.db.log(\"INFO\", f\"Vision: {vision_result['pages_analyzed']}\/{vision_result['pages_total']} pages\")\n            if self.progress:\n                self.progress.add_log(f\"Vision: {vision_result['pages_analyzed']} Seiten analysiert\")\n        else:\n            self.db.log(\"WARNING\", f\"Vision analysis failed: {vision_result.get('error')}\")\n\n        return vision_result\n\n    def execute_chunking(self, extraction, total_pages=0):\n        \"\"\"\n        Chunk extracted content.\n\n        Args:\n            extraction: Extraction result dict\n            total_pages: Number of pages (for logging)\n\n        Returns:\n            list: Chunk dictionaries\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"chunk\")\n            if total_pages > 0:\n                self.progress.add_log(f\"Erstelle Chunks aus {total_pages} Seiten...\")\n            else:\n                self.progress.add_log(\"Erstelle Chunks...\")\n\n        chunks = chunk_by_structure(extraction)\n        self.db.log(\"INFO\", f\"Created {len(chunks)} chunks\")\n\n        if self.progress:\n            msg = f\"{len(chunks)} Chunks erstellt\"\n            if total_pages > 0:\n                msg += f\" (aus {total_pages} Seiten)\"\n            self.progress.add_log(msg)\n\n        return chunks\n\n    def execute_enrichment(self, doc_id, file_type):\n        \"\"\"\n        Enrich chunks with vision context (PDFs only).\n\n        Args:\n            doc_id: Document database ID\n            file_type: File extension\n\n        Returns:\n            dict: Enrichment result\n        \"\"\"\n        if file_type != \".pdf\":\n            return {\"success\": False, \"error\": \"Not a PDF\"}\n\n        if self.progress:\n            self.progress.update_step(\"enrich\")\n\n        self.db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n\n        enrich_result = run_enrichment_step(doc_id)\n\n        if enrich_result[\"success\"]:\n            self.db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks\")\n        else:\n            self.db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")\n\n        return enrich_result\n\n    def execute_analysis(self, doc_id, full_text):\n        \"\"\"\n        Execute semantic analysis on document.\n\n        Args:\n            doc_id: Document database ID\n            full_text: Full document text\n\n        Returns:\n            dict: Analysis result\n        \"\"\"\n        if self.progress:\n            self.progress.update_step(\"analyze\")\n\n        analysis = analyze_document(doc_id, full_text, progress=self.progress)\n        self.db.log(\"INFO\", f\"Analysis complete: {analysis}\")\n\n        return analysis\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →