Protokoll #15597

ID15597
Zeitstempel2025-12-25 16:55:42.434220
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens1,675 (Input: 835, Output: 840)
Dauer123 ms
Request-Zeit2025-12-25 16:55:42.434220
Response-Zeit2025-12-25 16:55:42.556904

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/step_extract.py",
        "content": "\"\"\"\nExtraction Step Module\nHandles document text extraction for all supported formats.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nimport hashlib\nimport os\nfrom pathlib import Path\n\nfrom extract import extract, get_full_text\n\n\nclass ExtractionStep:\n    \"\"\"Step: Extract text from documents.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize extraction step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute(self, file_path):\n        \"\"\"\n        Extract text from document.\n\n        Args:\n            file_path: Path to document file\n\n        Returns:\n            dict: {\n                'success': bool,\n                'extraction': dict with content\/metadata,\n                'file_info': dict with hash\/size\/type,\n                'error': str (if failed)\n            }\n        \"\"\"\n        file_name = Path(file_path).name\n\n        if self.progress:\n            self.progress.update_step(\"extract\")\n            self.progress.add_log(f\"Extrahiere Text: {file_name}\")\n\n        self.db.log(\"INFO\", f\"Extracting: {file_path}\")\n\n        # Check cancellation\n        if self.progress and self.progress.is_cancelled():\n            return {\"success\": False, \"error\": \"cancelled\"}\n\n        # Extract content\n        extraction = extract(file_path)\n        if not extraction[\"success\"]:\n            error = extraction.get(\"error\", \"Unknown extraction error\")\n            self.db.log(\"ERROR\", f\"Extraction failed: {error}\")\n            if self.progress:\n                self.progress.add_log(\"FEHLER: Extraktion fehlgeschlagen\")\n            return {\"success\": False, \"error\": error}\n\n        # Get file metadata\n        file_stat = os.stat(file_path)\n        with open(file_path, \"rb\") as f:\n            file_hash = hashlib.sha256(f.read()).hexdigest()\n\n        file_info = {\n            \"path\": file_path,\n            \"name\": file_name,\n            \"type\": extraction[\"file_type\"],\n            \"size\": file_stat.st_size,\n            \"hash\": file_hash,\n        }\n\n        # Count pages for PDFs\n        total_pages = 0\n        if extraction[\"file_type\"] == \".pdf\" and isinstance(extraction.get(\"content\"), list):\n            total_pages = len(extraction[\"content\"])\n            if self.progress:\n                self.progress.add_log(f\"{total_pages} Seiten extrahiert\")\n\n        self.db.log(\"INFO\", f\"Extraction complete: {total_pages} pages\" if total_pages else \"Extraction complete\")\n\n        return {\n            \"success\": True,\n            \"extraction\": extraction,\n            \"file_info\": file_info,\n            \"total_pages\": total_pages,\n        }\n\n    def get_full_text_from_extraction(self, extraction):\n        \"\"\"\n        Get full text from extraction result.\n\n        Args:\n            extraction: Extraction result dict\n\n        Returns:\n            str: Full document text\n        \"\"\"\n        return get_full_text(extraction)\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/scripts\/pipeline\/step_extract.py",
        "content": "\"\"\"\nExtraction Step Module\nHandles document text extraction for all supported formats.\n\nPart of modularized pipeline architecture.\n\"\"\"\n\nimport hashlib\nimport os\nfrom pathlib import Path\n\nfrom extract import extract, get_full_text\n\n\nclass ExtractionStep:\n    \"\"\"Step: Extract text from documents.\"\"\"\n\n    def __init__(self, db, progress=None):\n        \"\"\"\n        Initialize extraction step.\n\n        Args:\n            db: Database instance\n            progress: Optional PipelineProgress instance\n        \"\"\"\n        self.db = db\n        self.progress = progress\n\n    def execute(self, file_path):\n        \"\"\"\n        Extract text from document.\n\n        Args:\n            file_path: Path to document file\n\n        Returns:\n            dict: {\n                'success': bool,\n                'extraction': dict with content\/metadata,\n                'file_info': dict with hash\/size\/type,\n                'error': str (if failed)\n            }\n        \"\"\"\n        file_name = Path(file_path).name\n\n        if self.progress:\n            self.progress.update_step(\"extract\")\n            self.progress.add_log(f\"Extrahiere Text: {file_name}\")\n\n        self.db.log(\"INFO\", f\"Extracting: {file_path}\")\n\n        # Check cancellation\n        if self.progress and self.progress.is_cancelled():\n            return {\"success\": False, \"error\": \"cancelled\"}\n\n        # Extract content\n        extraction = extract(file_path)\n        if not extraction[\"success\"]:\n            error = extraction.get(\"error\", \"Unknown extraction error\")\n            self.db.log(\"ERROR\", f\"Extraction failed: {error}\")\n            if self.progress:\n                self.progress.add_log(\"FEHLER: Extraktion fehlgeschlagen\")\n            return {\"success\": False, \"error\": error}\n\n        # Get file metadata\n        file_stat = os.stat(file_path)\n        with open(file_path, \"rb\") as f:\n            file_hash = hashlib.sha256(f.read()).hexdigest()\n\n        file_info = {\n            \"path\": file_path,\n            \"name\": file_name,\n            \"type\": extraction[\"file_type\"],\n            \"size\": file_stat.st_size,\n            \"hash\": file_hash,\n        }\n\n        # Count pages for PDFs\n        total_pages = 0\n        if extraction[\"file_type\"] == \".pdf\" and isinstance(extraction.get(\"content\"), list):\n            total_pages = len(extraction[\"content\"])\n            if self.progress:\n                self.progress.add_log(f\"{total_pages} Seiten extrahiert\")\n\n        self.db.log(\"INFO\", f\"Extraction complete: {total_pages} pages\" if total_pages else \"Extraction complete\")\n\n        return {\n            \"success\": True,\n            \"extraction\": extraction,\n            \"file_info\": file_info,\n            \"total_pages\": total_pages,\n        }\n\n    def get_full_text_from_extraction(self, extraction):\n        \"\"\"\n        Get full text from extraction result.\n\n        Args:\n            extraction: Extraction result dict\n\n        Returns:\n            str: Full document text\n        \"\"\"\n        return get_full_text(extraction)\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →