Protokoll #15230

ID15230
Zeitstempel2025-12-25 15:47:23.478907
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,103 (Input: 1,049, Output: 1,054)
Dauer102 ms
Request-Zeit2025-12-25 15:47:23.478907
Response-Zeit2025-12-25 15:47:23.581186

Request

{
    "event": "PreToolUse",
    "tool_name": "Write",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/knowledge\/entity_extractor.py",
        "content": "\"\"\"Entitäten-Extraktion für Wissensextraktion.\"\"\"\nimport sys\nsys.path.insert(0, \"\/var\/www\/scripts\/pipeline\")\n\nfrom db import db\n\nfrom .models import KnowledgeLevel, KnowledgeType\nfrom .llm_service import LLMService\n\n\nclass EntityExtractor:\n    \"\"\"Extrahiert Entitäten aus Text.\"\"\"\n\n    def __init__(self, llm_service: LLMService, store_knowledge_fn):\n        \"\"\"Initialisiere mit LLM-Service und Storage-Funktion.\"\"\"\n        self.llm = llm_service\n        self.store_knowledge = store_knowledge_fn\n\n    def extract_entities(self, text: str, level: KnowledgeLevel, source_id: int) -> list[dict]:\n        \"\"\"\n        Extrahiere Entitäten aus Text.\n\n        Args:\n            text: Eingabetext\n            level: Ebene (PAGE, SECTION, DOCUMENT)\n            source_id: ID der Quelle (page_id, section_id, document_id)\n\n        Returns:\n            Liste von Entitäten mit DB-IDs\n        \"\"\"\n        prompt = f\"\"\"Analysiere den folgenden deutschen Text und extrahiere alle wichtigen Entitäten.\n\nKategorien:\n- PERSON: Namen von Personen, Autoren, Therapeuten\n- ORGANIZATION: Firmen, Institute, Verbände\n- CONCEPT: Fachbegriffe, Theorien, Modelle\n- METHOD: Methoden, Techniken, Verfahren\n- TOOL: Werkzeuge, Instrumente, Materialien\n- LOCATION: Orte, Länder, Regionen\n- EVENT: Ereignisse, Konferenzen\n\nAntworte NUR als JSON:\n{{\"entities\": [\n    {{\"name\": \"...\", \"type\": \"CONCEPT\", \"context\": \"kurzer Kontext\", \"importance\": 0.0-1.0}}\n]}}\n\nText ({level.value}-Ebene):\n{text[:4000]}\"\"\"\n\n        result = self.llm.call_llm(prompt)\n        data = self.llm.parse_json(result)\n        entities = data.get(\"entities\", [])\n\n        # Speichere und gleiche mit DB ab\n        stored_entities = []\n        for entity in entities:\n            stored = self._store_entity(entity, level, source_id)\n            if stored:\n                stored_entities.append(stored)\n\n        # Speichere in Knowledge-Tabelle\n        self.store_knowledge(\n            level,\n            source_id,\n            KnowledgeType.ENTITY,\n            {\"entities\": [e[\"name\"] for e in stored_entities], \"count\": len(stored_entities)},\n        )\n\n        return stored_entities\n\n    def _store_entity(self, entity: dict, level: KnowledgeLevel, source_id: int) -> dict | None:\n        \"\"\"Speichere Entität in DB mit Duplikatprüfung.\"\"\"\n        try:\n            name = entity.get(\"name\", \"\").strip()\n            entity_type = entity.get(\"type\", \"OTHER\").upper()\n            context = entity.get(\"context\", \"\")\n\n            if not name:\n                return None\n\n            # Prüfe ob Entität existiert (case-insensitive)\n            cursor = db.execute(\n                \"\"\"SELECT id, name, type, description\n                   FROM entities\n                   WHERE LOWER(name) = LOWER(%s) OR LOWER(canonical_name) = LOWER(%s)\n                   LIMIT 1\"\"\",\n                (name, name),\n            )\n            existing = cursor.fetchone()\n            cursor.close()\n\n            if existing:\n                entity_id = existing[\"id\"]\n                db.log(\"DEBUG\", f\"Entität '{name}' existiert bereits (ID: {entity_id})\")\n            else:\n                # Neue Entität anlegen\n                cursor = db.execute(\n                    \"\"\"INSERT INTO entities (name, type, canonical_name, created_at)\n                       VALUES (%s, %s, %s, NOW())\"\"\",\n                    (name, entity_type, name.lower()),\n                )\n                db.commit()\n                entity_id = cursor.lastrowid\n                cursor.close()\n                db.log(\"INFO\", f\"Neue Entität angelegt: '{name}' (ID: {entity_id})\")\n\n            return {\"id\": entity_id, \"name\": name, \"type\": entity_type, \"context\": context, \"is_new\": existing is None}\n\n        except Exception as e:\n            db.log(\"ERROR\", f\"Fehler beim Speichern der Entität: {e}\")\n            return None\n"
    }
}

Response

{
    "tool_response": {
        "type": "create",
        "filePath": "\/var\/www\/scripts\/pipeline\/knowledge\/entity_extractor.py",
        "content": "\"\"\"Entitäten-Extraktion für Wissensextraktion.\"\"\"\nimport sys\nsys.path.insert(0, \"\/var\/www\/scripts\/pipeline\")\n\nfrom db import db\n\nfrom .models import KnowledgeLevel, KnowledgeType\nfrom .llm_service import LLMService\n\n\nclass EntityExtractor:\n    \"\"\"Extrahiert Entitäten aus Text.\"\"\"\n\n    def __init__(self, llm_service: LLMService, store_knowledge_fn):\n        \"\"\"Initialisiere mit LLM-Service und Storage-Funktion.\"\"\"\n        self.llm = llm_service\n        self.store_knowledge = store_knowledge_fn\n\n    def extract_entities(self, text: str, level: KnowledgeLevel, source_id: int) -> list[dict]:\n        \"\"\"\n        Extrahiere Entitäten aus Text.\n\n        Args:\n            text: Eingabetext\n            level: Ebene (PAGE, SECTION, DOCUMENT)\n            source_id: ID der Quelle (page_id, section_id, document_id)\n\n        Returns:\n            Liste von Entitäten mit DB-IDs\n        \"\"\"\n        prompt = f\"\"\"Analysiere den folgenden deutschen Text und extrahiere alle wichtigen Entitäten.\n\nKategorien:\n- PERSON: Namen von Personen, Autoren, Therapeuten\n- ORGANIZATION: Firmen, Institute, Verbände\n- CONCEPT: Fachbegriffe, Theorien, Modelle\n- METHOD: Methoden, Techniken, Verfahren\n- TOOL: Werkzeuge, Instrumente, Materialien\n- LOCATION: Orte, Länder, Regionen\n- EVENT: Ereignisse, Konferenzen\n\nAntworte NUR als JSON:\n{{\"entities\": [\n    {{\"name\": \"...\", \"type\": \"CONCEPT\", \"context\": \"kurzer Kontext\", \"importance\": 0.0-1.0}}\n]}}\n\nText ({level.value}-Ebene):\n{text[:4000]}\"\"\"\n\n        result = self.llm.call_llm(prompt)\n        data = self.llm.parse_json(result)\n        entities = data.get(\"entities\", [])\n\n        # Speichere und gleiche mit DB ab\n        stored_entities = []\n        for entity in entities:\n            stored = self._store_entity(entity, level, source_id)\n            if stored:\n                stored_entities.append(stored)\n\n        # Speichere in Knowledge-Tabelle\n        self.store_knowledge(\n            level,\n            source_id,\n            KnowledgeType.ENTITY,\n            {\"entities\": [e[\"name\"] for e in stored_entities], \"count\": len(stored_entities)},\n        )\n\n        return stored_entities\n\n    def _store_entity(self, entity: dict, level: KnowledgeLevel, source_id: int) -> dict | None:\n        \"\"\"Speichere Entität in DB mit Duplikatprüfung.\"\"\"\n        try:\n            name = entity.get(\"name\", \"\").strip()\n            entity_type = entity.get(\"type\", \"OTHER\").upper()\n            context = entity.get(\"context\", \"\")\n\n            if not name:\n                return None\n\n            # Prüfe ob Entität existiert (case-insensitive)\n            cursor = db.execute(\n                \"\"\"SELECT id, name, type, description\n                   FROM entities\n                   WHERE LOWER(name) = LOWER(%s) OR LOWER(canonical_name) = LOWER(%s)\n                   LIMIT 1\"\"\",\n                (name, name),\n            )\n            existing = cursor.fetchone()\n            cursor.close()\n\n            if existing:\n                entity_id = existing[\"id\"]\n                db.log(\"DEBUG\", f\"Entität '{name}' existiert bereits (ID: {entity_id})\")\n            else:\n                # Neue Entität anlegen\n                cursor = db.execute(\n                    \"\"\"INSERT INTO entities (name, type, canonical_name, created_at)\n                       VALUES (%s, %s, %s, NOW())\"\"\",\n                    (name, entity_type, name.lower()),\n                )\n                db.commit()\n                entity_id = cursor.lastrowid\n                cursor.close()\n                db.log(\"INFO\", f\"Neue Entität angelegt: '{name}' (ID: {entity_id})\")\n\n            return {\"id\": entity_id, \"name\": name, \"type\": entity_type, \"context\": context, \"is_new\": existing is None}\n\n        except Exception as e:\n            db.log(\"ERROR\", f\"Fehler beim Speichern der Entität: {e}\")\n            return None\n",
        "structuredPatch": [],
        "originalFile": null
    }
}
← Vorheriger Zur Liste Nächster →