Protokoll #15159

ID15159
Zeitstempel2025-12-25 14:03:19.756861
Clientroot
IP145.224.72.140
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens2,741 (Input: 32, Output: 2,709)
Dauer100 ms
Request-Zeit2025-12-25 14:03:19.756861
Response-Zeit2025-12-25 14:03:19.856592

Request

{
    "event": "PreToolUse",
    "tool_name": "Read",
    "tool_input": {
        "file_path": "\/var\/www\/scripts\/pipeline\/semantic_chunk_analyzer.py"
    }
}

Response

{
    "tool_response": {
        "type": "text",
        "file": {
            "filePath": "\/var\/www\/scripts\/pipeline\/semantic_chunk_analyzer.py",
            "content": "#!\/usr\/bin\/env python3\n\"\"\"\nSemantic Chunk Analyzer - Chunk-Level Semantic Analysis Pipeline\n\nAnalysiert Chunks aus der ki_system.chunks Tabelle und befüllt:\n- chunk_semantics (summary, keywords, sentiment, topics, language)\n- entities (extrahierte Entitäten)\n- chunk_entities (Verknüpfung Chunk <-> Entity)\n- entity_relations (Beziehungen zwischen Entitäten)\n- taxonomy_terms + chunk_taxonomy (Kategorisierung)\n\nPrinzipien: DRY, KISS, SRP, YAGNI\n- Eine Klasse pro Verantwortlichkeit\n- Ollama für LLM-Aufrufe (lokal, kostenfrei)\n- Batch-Verarbeitung für Effizienz\n\nUsage:\n    python semantic_chunk_analyzer.py analyze [--limit N]\n    python semantic_chunk_analyzer.py status\n    python semantic_chunk_analyzer.py reset\n\"\"\"\n\nimport json\nimport sys\nfrom dataclasses import dataclass\n\nimport requests\n\nfrom config import OLLAMA_HOST\nfrom db import db\n\n# === Configuration ===\nANALYSIS_MODEL = \"gemma3:27b-it-qat\"  # Beste JSON-Compliance und Qualität\nBATCH_SIZE = 10\n\n\n# === Data Classes (SRP) ===\n@dataclass\nclass ChunkSemantics:\n    \"\"\"Semantische Analyse eines Chunks.\"\"\"\n\n    chunk_id: int\n    summary: str\n    keywords: list[str]\n    sentiment: str  # positive, neutral, negative, mixed\n    topics: list[str]\n    language: str\n\n\n@dataclass\nclass Entity:\n    \"\"\"Extrahierte Entität.\"\"\"\n\n    name: str\n    entity_type: str  # PERSON, ORGANIZATION, CONCEPT, LOCATION, OTHER\n    description: str | None = None\n\n\n@dataclass\nclass Relation:\n    \"\"\"Beziehung zwischen Entitäten.\"\"\"\n\n    source: str\n    relation_type: str\n    target: str\n    strength: float = 0.5\n\n\n# === LLM Service (SRP) ===\nclass OllamaService:\n    \"\"\"Ollama API Wrapper - Single Responsibility: LLM Kommunikation.\"\"\"\n\n    def __init__(self, host: str = OLLAMA_HOST, model: str = ANALYSIS_MODEL):\n        self.host = host\n        self.model = model\n\n    def generate(self, prompt: str, json_format: bool = True) -> dict | None:\n        \"\"\"Generiere Antwort von Ollama.\"\"\"\n        try:\n            payload = {\n                \"model\": self.model,\n                \"prompt\": prompt,\n                \"stream\": False,\n                \"options\": {\"temperature\": 0.3, \"num_predict\": 1000},\n            }\n            if json_format:\n                payload[\"format\"] = \"json\"\n\n            response = requests.post(f\"{self.host}\/api\/generate\", json=payload, timeout=120)\n            response.raise_for_status()\n\n            text = response.json().get(\"response\", \"{}\")\n            if json_format:\n                return self._parse_json(text)\n            return {\"text\": text}\n        except Exception as e:\n            db.log(\"ERROR\", f\"Ollama error: {e}\")\n            return None\n\n    def _parse_json(self, text: str) -> dict | None:\n        \"\"\"Parse JSON aus Antwort.\"\"\"\n        try:\n            return json.loads(text)\n        except json.JSONDecodeError:\n            # Versuche JSON aus Text zu extrahieren\n            import re\n\n            match = re.search(r\"\\{[\\s\\S]*\\}\", text)\n            if match:\n                try:\n                    return json.loads(match.group())\n                except json.JSONDecodeError:\n                    pass\n            return None\n\n\n# === Analyzer Classes (SRP) ===\nclass SemanticsAnalyzer:\n    \"\"\"Analysiert Chunk-Semantik: Summary, Keywords, Sentiment.\"\"\"\n\n    PROMPT = \"\"\"Analysiere diesen deutschen Text und erstelle eine semantische Analyse.\n\nText:\n{text}\n\nAntworte NUR als JSON:\n{{\n    \"summary\": \"Zusammenfassung in 1-2 Sätzen\",\n    \"keywords\": [\"keyword1\", \"keyword2\", \"keyword3\"],\n    \"sentiment\": \"positive|neutral|negative|mixed\",\n    \"topics\": [\"thema1\", \"thema2\"],\n    \"language\": \"de|en\"\n}}\"\"\"\n\n    def __init__(self, llm: OllamaService):\n        self.llm = llm\n\n    def analyze(self, chunk_id: int, text: str) -> ChunkSemantics | None:\n        \"\"\"Analysiere einen Chunk.\"\"\"\n        result = self.llm.generate(self.PROMPT.format(text=text[:2000]))\n        if not result:\n            return None\n\n        # Robuste Extraktion mit Typ-Validierung\n        summary = result.get(\"summary\", \"\")\n        if isinstance(summary, list):\n            summary = summary[0] if summary else \"\"\n\n        keywords = result.get(\"keywords\", [])\n        if not isinstance(keywords, list):\n            keywords = [str(keywords)] if keywords else []\n        keywords = [str(k) for k in keywords if k and not isinstance(k, (list, dict))][:10]\n\n        topics = result.get(\"topics\", [])\n        if not isinstance(topics, list):\n            topics = [str(topics)] if topics else []\n        topics = [str(t) for t in topics if t and not isinstance(t, (list, dict))][:5]\n\n        language = result.get(\"language\", \"de\")\n        if isinstance(language, list):\n            language = language[0] if language else \"de\"\n\n        return ChunkSemantics(\n            chunk_id=chunk_id,\n            summary=str(summary)[:1000],\n            keywords=keywords,\n            sentiment=self._validate_sentiment(result.get(\"sentiment\", \"neutral\")),\n            topics=topics,\n            language=str(language)[:5],\n        )\n\n    def _validate_sentiment(self, sentiment) -> str:\n        \"\"\"Validiere Sentiment-Wert.\"\"\"\n        if isinstance(sentiment, list):\n            sentiment = sentiment[0] if sentiment else \"neutral\"\n        if not isinstance(sentiment, str):\n            return \"neutral\"\n        valid = {\"positive\", \"neutral\", \"negative\", \"mixed\"}\n        return sentiment.lower() if sentiment.lower() in valid else \"neutral\"\n\n\nclass EntityExtractor:\n    \"\"\"Extrahiert Entitäten aus Text.\"\"\"\n\n    PROMPT = \"\"\"Extrahiere alle wichtigen Entitäten aus diesem deutschen Text.\n\nKategorien:\n- PERSON: Namen von Personen\n- ORGANIZATION: Firmen, Institutionen\n- CONCEPT: Fachbegriffe, Methoden, Theorien\n- LOCATION: Orte, Länder\n- OTHER: Sonstiges\n\nText:\n{text}\n\nAntworte NUR als JSON:\n{{\n    \"entities\": [\n        {{\"name\": \"Name\", \"type\": \"CONCEPT\", \"description\": \"Kurze Beschreibung\"}}\n    ]\n}}\"\"\"\n\n    def __init__(self, llm: OllamaService):\n        self.llm = llm\n\n    def extract(self, text: str) -> list[Entity]:\n        \"\"\"Extrahiere Entitäten aus Text.\"\"\"\n        result = self.llm.generate(self.PROMPT.format(text=text[:2000]))\n        if not result:\n            return []\n\n        entities = []\n        for e in result.get(\"entities\", []):\n            name = e.get(\"name\")\n            etype = e.get(\"type\")\n            desc = e.get(\"description\")\n\n            # Validiere: name und type müssen Strings sein\n            if isinstance(name, list):\n                name = name[0] if name else None\n            if isinstance(etype, list):\n                etype = etype[0] if etype else None\n            if isinstance(desc, list):\n                desc = desc[0] if desc else None\n\n            if name and isinstance(name, str) and etype:\n                entities.append(\n                    Entity(\n                        name=str(name)[:200],  # Limit length\n                        entity_type=self._validate_type(str(etype)),\n                        description=str(desc)[:500] if desc else None,\n                    )\n                )\n        return entities[:20]  # Max 20 pro Chunk\n\n    def _validate_type(self, entity_type: str) -> str:\n        \"\"\"Validiere Entity-Typ.\"\"\"\n        valid = {\"PERSON\", \"ORGANIZATION\", \"CONCEPT\", \"LOCATION\", \"OTHER\"}\n        return entity_type.upper() if entity_type.upper() in valid else \"OTHER\"\n\n\nclass RelationExtractor:\n    \"\"\"Extrahiert Beziehungen zwischen Entitäten.\"\"\"\n\n    PROMPT = \"\"\"Finde Beziehungen zwischen diesen Entitäten im Text.\n\nEntitäten: {entities}\n\nBeziehungstypen:\n- RELATED_TO: steht in Beziehung zu\n- PART_OF: ist Teil von\n- DEVELOPED_BY: wurde entwickelt von\n- USED_IN: wird verwendet in\n- INFLUENCED_BY: wurde beeinflusst von\n\nText:\n{text}\n\nAntworte NUR als JSON:\n{{\n    \"relations\": [\n        {{\"source\": \"Entity1\", \"relation\": \"RELATED_TO\", \"target\": \"Entity2\", \"strength\": 0.8}}\n    ]\n}}\"\"\"\n\n    def __init__(self, llm: OllamaService):\n        self.llm = llm\n\n    def extract(self, text: str, entities: list[Entity]) -> list[Relation]:\n        \"\"\"Extrahiere Relationen zwischen Entitäten.\"\"\"\n        if len(entities) < 2:\n            return []\n\n        entity_names = \", \".join([e.name for e in entities[:15]])\n        result = self.llm.generate(self.PROMPT.format(entities=entity_names, text=text[:1500]))\n\n        if not result:\n            return []\n\n        relations = []\n        for r in result.get(\"relations\", []):\n            source = r.get(\"source\")\n            target = r.get(\"target\")\n            rel_type = r.get(\"relation\")\n            strength = r.get(\"strength\", 0.5)\n\n            # Validiere Typen\n            if isinstance(source, list):\n                source = source[0] if source else None\n            if isinstance(target, list):\n                target = target[0] if target else None\n            if isinstance(rel_type, list):\n                rel_type = rel_type[0] if rel_type else None\n\n            if source and target and rel_type and isinstance(source, str) and isinstance(target, str):\n                try:\n                    strength_val = float(strength) if not isinstance(strength, list) else 0.5\n                except (ValueError, TypeError):\n                    strength_val = 0.5\n                relations.append(\n                    Relation(\n                        source=str(source)[:200],\n                        relation_type=str(rel_type)[:50],\n                        target=str(target)[:200],\n                        strength=min(1.0, max(0.0, strength_val)),\n                    )\n                )\n        return relations[:10]  # Max 10 pro Chunk\n\n\nclass TaxonomyClassifier:\n    \"\"\"Klassifiziert Chunks in Taxonomie-Kategorien.\"\"\"\n\n    # Standard-Taxonomie für systemische Inhalte\n    CATEGORIES = [\n        \"Methoden\",\n        \"Theorie\",\n        \"Praxis\",\n        \"Kommunikation\",\n        \"Organisation\",\n        \"Entwicklung\",\n        \"Coaching\",\n        \"Therapie\",\n    ]\n\n    PROMPT = \"\"\"Klassifiziere diesen Text in passende Kategorien.\n\nKategorien: {categories}\n\nText:\n{text}\n\nAntworte NUR al... [TRUNCATED-a0b3b9e3fdc8ca42]",
            "numLines": 678,
            "startLine": 1,
            "totalLines": 678
        }
    }
}
← Vorheriger Zur Liste Nächster →