Protokoll #12564

ID12564
Zeitstempel2025-12-24 09:40:32.884880
Clientroot
IP145.224.96.190
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens684 (Input: 44, Output: 640)
Dauer414 ms
Request-Zeit2025-12-24 09:40:32.884880
Response-Zeit2025-12-24 09:40:33.298387

Request

{
    "event": "PreToolUse",
    "tool_name": "Grep",
    "tool_input": {
        "pattern": "def.*chat|search_similar|get_embedding",
        "path": "\/var\/www\/scripts\/pipeline",
        "output_mode": "content"
    }
}

Response

{
    "tool_response": {
        "mode": "content",
        "numFiles": 0,
        "filenames": [],
        "content": "venv\/lib\/python3.13\/site-packages\/qdrant_client-1.16.2.dist-info\/METADATA:178:        size=client.get_embedding_size(model_name), distance=models.Distance.COSINE)\nvenv\/lib\/python3.13\/site-packages\/ollama-0.6.1.dist-info\/METADATA:95:async def chat():\nvenv\/lib\/python3.13\/site-packages\/ollama-0.6.1.dist-info\/METADATA:108:async def chat():\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:287:  def chat(\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:303:  def chat(\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:318:  def chat(\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:904:  async def chat(\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:920:  async def chat(\nvenv\/lib\/python3.13\/site-packages\/ollama\/_client.py:935:  async def chat(\nvenv\/lib\/python3.13\/site-packages\/qdrant_client\/async_qdrant_fastembed.py:425:    def get_embedding_size(self, model_name: str | None = None) -> int:\nvenv\/lib\/python3.13\/site-packages\/qdrant_client\/qdrant_fastembed.py:443:    def get_embedding_size(\ngenerate.py:14:from embed import search_similar  # noqa: E402\ngenerate.py:83:    results = search_similar(briefing, collection=collection, limit=limit)\nmodel_registry.py:46:    def get_chat_models(self) -> dict:\nmodel_registry.py:62:    def get_embedding_models(self) -> dict:\nmodel_registry.py:121:    def get_default_chat_model(self) -> str:\nmodel_registry.py:122:        \"\"\"Get default chat model (first available by priority).\"\"\"\nmodel_registry.py:130:        embed_models = self.get_embedding_models()\nmodel_registry.py:169:def get_chat_model() -> str:\nmodel_registry.py:170:    \"\"\"Get the default chat model from registry.\"\"\"\nmodel_registry.py:176:    return registry.get_default_chat_model()\nmodel_registry.py:179:def get_embedding_model() -> str:\nchat.py:18:def get_embedding(text):\nchat.py:121:def chat(question, use_claude=True, top_k=5):\nchat.py:134:    query_embedding = get_embedding(question)\nconfig.py:117:def get_chat_model_from_registry():\nconfig.py:118:    \"\"\"Get default chat model from central registry (ki_dev.ai_models).\"\"\"\nembed.py:20:def get_embedding(text):\nembed.py:77:        embedding = get_embedding(chunk[\"content\"])\nembed.py:132:            embedding = get_embedding(chunk[\"content\"])\nembed.py:166:def search_similar(query, collection=\"documents\", limit=5):\nembed.py:169:    embedding = get_embedding(query)\nembed.py:196:        results = search_similar(query)",
        "numLines": 33
    }
}
← Vorheriger Zur Liste Nächster →