{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/var\/www\/scripts\/pipeline\/generate.py",
"offset": 78,
"limit": 20
}
}
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/var\/www\/scripts\/pipeline\/generate.py",
"content": "def get_rag_context(briefing, collection=\"documents\", limit=5):\n \"\"\"\n Get relevant context from Qdrant based on briefing.\n Returns list of chunks with content and metadata.\n \"\"\"\n results = search_similar(briefing, collection=collection, limit=limit)\n\n context_items = []\n for result in results:\n context_items.append(\n {\n \"content\": result[\"payload\"].get(\"content\", \"\"),\n \"source\": result[\"payload\"].get(\"document_title\", \"Unknown\"),\n \"score\": round(result[\"score\"], 4),\n }\n )\n\n return context_items\n\n",
"numLines": 20,
"startLine": 78,
"totalLines": 987
}
}
}