Protokoll #12546

ID12546
Zeitstempel2025-12-24 09:36:09.219351
Clientroot
IP145.224.96.190
Modellclaude-sonnet-4-20250514
Statuscompleted
Tokens691 (Input: 41, Output: 650)
Dauer402 ms
Request-Zeit2025-12-24 09:36:09.219351
Response-Zeit2025-12-24 09:36:09.621063

Request

{
    "event": "PreToolUse",
    "tool_name": "Grep",
    "tool_input": {
        "pattern": "def search_similar",
        "path": "\/var\/www\/scripts\/pipeline",
        "output_mode": "content",
        "-A": 40
    }
}

Response

{
    "tool_response": {
        "mode": "content",
        "numFiles": 0,
        "filenames": [],
        "content": "embed.py:166:def search_similar(query, collection=\"documents\", limit=5):\n\/var\/www\/scripts\/pipeline\/embed.py-167-    \"\"\"Search for similar documents in Qdrant.\"\"\"\n\/var\/www\/scripts\/pipeline\/embed.py-168-    # Get query embedding\n\/var\/www\/scripts\/pipeline\/embed.py-169-    embedding = get_embedding(query)\nembed.py-170-    if not embedding:\n\/var\/www\/scripts\/pipeline\/embed.py-171-        return []\n\/var\/www\/scripts\/pipeline\/embed.py-172-\nembed.py-173-    try:\n\/var\/www\/scripts\/pipeline\/embed.py-174-        response = requests.post(\nembed.py-175-            f\"http:\/\/{QDRANT_HOST}:{QDRANT_PORT}\/collections\/{collection}\/points\/search\",\nembed.py-176-            json={\"vector\": embedding, \"limit\": limit, \"with_payload\": True},\nembed.py-177-            headers={\"Content-Type\": \"application\/json\"},\n\/var\/www\/scripts\/pipeline\/embed.py-178-            timeout=30,\n\/var\/www\/scripts\/pipeline\/embed.py-179-        )\n\/var\/www\/scripts\/pipeline\/embed.py-180-        response.raise_for_status()\n\/var\/www\/scripts\/pipeline\/embed.py-181-        data = response.json()\n\/var\/www\/scripts\/pipeline\/embed.py-182-        return data.get(\"result\", [])\nembed.py-183-    except Exception as e:\nembed.py-184-        db.log(\"ERROR\", f\"Qdrant search failed: {e}\")\n\/var\/www\/scripts\/pipeline\/embed.py-185-        return []\n\/var\/www\/scripts\/pipeline\/embed.py-186-\n\/var\/www\/scripts\/pipeline\/embed.py-187-\nembed.py-188-if __name__ == \"__main__\":\n\/var\/www\/scripts\/pipeline\/embed.py-189-    import sys\n\/var\/www\/scripts\/pipeline\/embed.py-190-\nembed.py-191-    if len(sys.argv) > 1:\nembed.py-192-        query = \" \".join(sys.argv[1:])\nembed.py-193-        print(f\"Searching for: {query}\")\n\/var\/www\/scripts\/pipeline\/embed.py-194-        print(\"-\" * 50)\n\/var\/www\/scripts\/pipeline\/embed.py-195-\n\/var\/www\/scripts\/pipeline\/embed.py-196-        results = search_similar(query)\nembed.py-197-        for i, result in enumerate(results):\nembed.py-198-            print(f\"\\n[{i + 1}] Score: {result['score']:.4f}\")\nembed.py-199-            print(f\"    Document: {result['payload'].get('document_title', 'Unknown')}\")\nembed.py-200-            print(f\"    Content: {result['payload'].get('content', '')[:200]}...\")\nembed.py-201-    else:\n\/var\/www\/scripts\/pipeline\/embed.py-202-        # Run pending embeddings\n\/var\/www\/scripts\/pipeline\/embed.py-203-        count = embed_pending_chunks()\n\/var\/www\/scripts\/pipeline\/embed.py-204-        print(f\"Embedded {count} chunks\")",
        "numLines": 39
    }
}
← Vorheriger Zur Liste Nächster →