Protokoll #6593
| ID | 6593 |
|---|---|
| Zeitstempel | 2025-12-23 06:28:10.286832 |
| Client | root |
| IP | Warning: Undefined array key "request_ip" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 Deprecated: htmlspecialchars(): Passing null to parameter #1 ($string) of type string is deprecated in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 |
| Modell | claude-sonnet-4-20250514 |
| Status | completed |
| Tokens | 3,459 (Input: 0, Output: 0) |
| Dauer | 96 ms |
| Request-Zeit | Warning: Undefined array key "request_timestamp" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 18 |
| Response-Zeit | - |
Warning: Undefined array key "error_message" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 22
Request
{
"event": "PreToolUse",
"tool_name": "Edit",
"tool_input": {
"file_path": "\/opt\/scripts\/pipeline\/pipeline.py",
"old_string": " # Enrich chunks with vision context (for PDFs)\n if extraction[\"file_type\"] == \".pdf\":\n if progress:\n progress.update_step(\"enrich\")\n\n db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n enrich_result = run_enrichment_step(doc_id)\n if enrich_result[\"success\"]:\n db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks enriched\")\n else:\n db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")",
"new_string": " # Enrich chunks with vision context (for PDFs) - requires vision step\n if extraction[\"file_type\"] == \".pdf\" and VISION_ENABLED:\n if progress:\n progress.update_step(\"enrich\")\n\n db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n enrich_result = run_enrichment_step(doc_id)\n if enrich_result[\"success\"]:\n db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks enriched\")\n else:\n db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")"
}
}
Response
{
"tool_response": {
"filePath": "\/opt\/scripts\/pipeline\/pipeline.py",
"oldString": " # Enrich chunks with vision context (for PDFs)\n if extraction[\"file_type\"] == \".pdf\":\n if progress:\n progress.update_step(\"enrich\")\n\n db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n enrich_result = run_enrichment_step(doc_id)\n if enrich_result[\"success\"]:\n db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks enriched\")\n else:\n db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")",
"newString": " # Enrich chunks with vision context (for PDFs) - requires vision step\n if extraction[\"file_type\"] == \".pdf\" and VISION_ENABLED:\n if progress:\n progress.update_step(\"enrich\")\n\n db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n enrich_result = run_enrichment_step(doc_id)\n if enrich_result[\"success\"]:\n db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks enriched\")\n else:\n db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")",
"originalFile": "#!\/usr\/bin\/env python3\n\"\"\"\nKI-System Document Pipeline\nMain orchestration script for document processing.\n\nUsage:\n python pipeline.py scan # Scan for new documents\n python pipeline.py process # Process queued documents\n python pipeline.py embed # Embed pending chunks\n python pipeline.py all # Full pipeline run\n python pipeline.py all --pipeline-id=1 --run-id=5 # With tracking\n python pipeline.py file <path> # Process single file\n\"\"\"\n\nimport argparse\nimport json\nimport os\nimport time\nfrom pathlib import Path\n\nfrom analyze import analyze_document\nfrom chunk import chunk_by_structure\nfrom config import MAX_RETRIES, RETRY_BACKOFF_BASE\nfrom db import PipelineProgress, db\nfrom detect import queue_files, scan_directory\nfrom embed import embed_chunks, embed_pending_chunks\nfrom enrich import run_enrichment_step\nfrom extract import extract, get_full_text\nfrom vision import run_vision_step\n\n\ndef process_file(file_path, progress=None):\n \"\"\"Process a single file through the pipeline.\"\"\"\n db.log(\"INFO\", f\"Processing: {file_path}\")\n file_name = Path(file_path).name\n\n if progress:\n progress.update_document(file_name)\n\n # Extract text\n if progress:\n progress.update_step(\"extract\")\n progress.add_log(f\"Extrahiere Text: {file_name}\")\n\n extraction = extract(file_path)\n if not extraction[\"success\"]:\n db.log(\"ERROR\", f\"Extraction failed: {extraction.get('error')}\")\n if progress:\n progress.add_log(\"FEHLER: Extraktion fehlgeschlagen\")\n return False, 0, 0\n\n # Get page count for PDFs\n total_pages = 0\n if extraction[\"file_type\"] == \".pdf\" and isinstance(extraction.get(\"content\"), list):\n total_pages = len(extraction[\"content\"])\n if progress:\n progress.add_log(f\"{total_pages} Seiten extrahiert\")\n\n # Get document info\n file_stat = os.stat(file_path)\n\n import hashlib\n\n with open(file_path, \"rb\") as f:\n file_hash = hashlib.sha256(f.read()).hexdigest()\n\n # Insert document\n doc_id = db.insert_document(\n file_path=file_path,\n title=file_name,\n file_type=extraction[\"file_type\"],\n file_size=file_stat.st_size,\n file_hash=file_hash,\n )\n db.log(\"INFO\", f\"Created document: {doc_id}\")\n\n # Vision analysis for PDFs (SKIP for now - too slow, ~2min\/page)\n # TODO: Make configurable via pipeline_configs or limit to first N pages\n VISION_ENABLED = False\n VISION_MAX_PAGES = 10 # Only analyze first N pages if enabled\n\n if extraction[\"file_type\"] == \".pdf\" and VISION_ENABLED:\n if progress:\n progress.update_step(\"vision\")\n progress.add_log(\"Vision-Analyse gestartet...\")\n\n db.log(\"INFO\", f\"Running vision analysis for document {doc_id}\")\n vision_config = {\n \"model\": \"minicpm-v:latest\",\n \"store_images\": True,\n \"detect_images\": True,\n \"detect_charts\": True,\n \"detect_tables\": True,\n \"max_pages\": VISION_MAX_PAGES,\n }\n vision_result = run_vision_step(doc_id, file_path, vision_config, progress=progress)\n if vision_result[\"success\"]:\n db.log(\"INFO\", f\"Vision: {vision_result['pages_analyzed']}\/{vision_result['pages_total']} pages analyzed\")\n if progress:\n progress.add_log(f\"Vision: {vision_result['pages_analyzed']} Seiten analysiert\")\n else:\n db.log(\"WARNING\", f\"Vision analysis failed: {vision_result.get('error')}\")\n\n # Chunk content\n if progress:\n progress.update_step(\"chunk\")\n if total_pages > 0:\n progress.add_log(f\"Erstelle Chunks aus {total_pages} Seiten...\")\n else:\n progress.add_log(\"Erstelle Chunks...\")\n\n chunks = chunk_by_structure(extraction)\n db.log(\"INFO\", f\"Created {len(chunks)} chunks\")\n\n # Store chunks\n for i, chunk in enumerate(chunks):\n chunk_id = db.insert_chunk(\n doc_id=doc_id,\n chunk_index=i,\n content=chunk[\"content\"],\n heading_path=json.dumps(chunk.get(\"heading_path\", [])),\n position_start=chunk.get(\"position_start\", 0),\n position_end=chunk.get(\"position_end\", 0),\n metadata=json.dumps(chunk.get(\"metadata\", {})),\n )\n chunk[\"db_id\"] = chunk_id\n\n if progress:\n progress.add_log(f\"{len(chunks)} Chunks erstellt (aus {total_pages} Seiten)\" if total_pages > 0 else f\"{len(chunks)} Chunks erstellt\")\n\n # Enrich chunks with vision context (for PDFs)\n if extraction[\"file_type\"] == \".pdf\":\n if progress:\n progress.update_step(\"enrich\")\n\n db.log(\"INFO\", f\"Running vision enrichment for document {doc_id}\")\n enrich_result = run_enrichment_step(doc_id)\n if enrich_result[\"success\"]:\n db.log(\"INFO\", f\"Enrichment: {enrich_result['enriched']}\/{enrich_result['total_chunks']} chunks enriched\")\n else:\n db.log(\"WARNING\", f\"Enrichment failed: {enrich_result.get('error')}\")\n\n # Generate embeddings\n if progress:\n progress.update_step(\"embed\")\n progress.add_log(f\"Erstelle Embeddings für {len(chunks)} Chunks...\")\n\n embedded = embed_chunks(chunks, doc_id, file_name, file_path, progress=progress)\n db.log(\"INFO\", f\"Embedded {embedded}\/{len(chunks)} chunks\")\n\n if progress:\n progress.add_log(f\"{embedded} Embeddings erstellt\")\n\n # Semantic analysis\n if progress:\n progress.update_step(\"analyze\")\n progress.add_log(\"Semantische Analyse...\")\n\n full_text = get_full_text(extraction)\n analysis = analyze_document(doc_id, full_text)\n db.log(\"INFO\", f\"Analysis complete: {analysis}\")\n\n # Update status\n db.update_document_status(doc_id, \"done\")\n\n if progress:\n progress.add_log(f\"Fertig: {file_name}\")\n\n return True, len(chunks), embedded\n\n\ndef process_queue():\n \"\"\"Process items from the queue.\"\"\"\n items = db.get_pending_queue_items(limit=10)\n db.log(\"INFO\", f\"Found {len(items)} items in queue\")\n\n for item in items:\n queue_id = item[\"id\"]\n file_path = item[\"file_path\"]\n retry_count = item[\"retry_count\"]\n\n if retry_count >= MAX_RETRIES:\n db.update_queue_status(queue_id, \"failed\", \"Max retries exceeded\")\n continue\n\n db.update_queue_status(queue_id, \"processing\")\n\n try:\n success = process_file(file_path)\n if success:\n db.update_queue_status(queue_id, \"completed\")\n else:\n raise Exception(\"Processing returned False\")\n except Exception as e:\n error_msg = str(e)\n db.update_queue_status(queue_id, \"pending\", error_msg)\n\n # Exponential backoff\n wait_time = RETRY_BACKOFF_BASE ** (retry_count + 1)\n db.log(\"INFO\", f\"Retry {retry_count + 1} in {wait_time}s: {file_path}\")\n time.sleep(wait_time)\n\n\ndef run_scan():\n \"\"\"Scan for new documents.\"\"\"\n files = scan_directory()\n print(f\"Found {len(files)} files\")\n\n if files:\n queued = queue_files(files)\n print(f\"Queued {queued} files\")\n\n return files\n\n\ndef run_full_pipeline(run_id=None, pipeline_id=None):\n \"\"\"Run complete pipeline: scan → process → embed.\"\"\"\n progress = PipelineProgress(run_id) if run_id else None\n\n print(\"=\" * 50)\n print(\"KI-System Pipeline - Full Run\")\n if run_id:\n print(f\"Run ID: {run_id}, Pipeline ID: {pipeline_id}\")\n print(\"=\" * 50)\n\n try:\n # Phase 1: Scan\n if progress:\n progress.update_step(\"detect\")\n progress.add_log(\"Scanne nach Dokumenten...\")\n\n print(\"\\n[1\/3] Scanning for documents...\")\n files = scan_directory()\n print(f\"Found {len(files)} files\")\n\n if progress:\n progress.add_log(f\"{len(files)} neue Dokumente gefunden\")\n\n if files:\n queued = queue_files(files)\n print(f\"Queued {queued} files\")\n\n # Phase 2: Process each file\n items = db.get_pending_queue_items(limit=100)\n print(f\"\\n[2\/3] Processing {len(items)} documents...\")\n\n # Update total with actual queue count (may include items from previous runs)\n if progress:\n progress.update_progress(total=len(items))\n progress.add_log(f\"{len(items)} Dokumente in Queue\")\n\n total_chunks = 0\n total_embeddings = 0\n processed = 0\n failed = 0\n\n for item in items:\n # Check if cancelled\n if progress and progress.is_cancelled():\n progress.add_log(\"Pipeline abgebrochen durch Benutzer\")\n progress.complete(\"cancelled\")\n print(\"\\nPipeline cancelled by user\")\n return\n\n queue_id = item[\"id\"]\n file_path = item[\"file_path\"]\n file_name = Path(file_path).name\n\n if progress:\n progress.update_document(file_name)\n\n db.update_queue_status(queue_id, \"processing\")\n\n try:\n success, chunks, embedded = process_file(file_path, progress)\n if success:\n db.update_queue_status(queue_id, \"completed\")\n processed += 1\n total_chunks += chunks\n total_embeddings += embedded\n else:\n db.update_queue_status(queue_id, \"failed\", \"Processing failed\")\n failed += 1\n except Exception as e:\n db.update_queue_status(queue_id, \"failed\", str(e))\n failed += 1\n if progress:\n progress.add_log(f\"FEHLER bei {file_name}: {str(e)[:50]}\")\n\n if progress:\n progress.update_progress(\n process... [TRUNCATED-cbef9c9a191666d2]",
"structuredPatch": [
{
"oldStart": 128,
"oldLines": 8,
"newStart": 128,
"newLines": 8,
"lines": [
" if progress:",
" progress.add_log(f\"{len(chunks)} Chunks erstellt (aus {total_pages} Seiten)\" if total_pages > 0 else f\"{len(chunks)} Chunks erstellt\")",
" ",
"- # Enrich chunks with vision context (for PDFs)",
"- if extraction[\"file_type\"] == \".pdf\":",
"+ # Enrich chunks with vision context (for PDFs) - requires vision step",
"+ if extraction[\"file_type\"] == \".pdf\" and VISION_ENABLED:",
" if progress:",
" progress.update_step(\"enrich\")",
" "
]
}
],
"userModified": false,
"replaceAll": false
}
}