Protokoll #5414
| ID | 5414 |
|---|---|
| Zeitstempel | 2025-12-22 22:20:19.117878 |
| Client | root |
| IP | Warning: Undefined array key "request_ip" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 Deprecated: htmlspecialchars(): Passing null to parameter #1 ($string) of type string is deprecated in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 |
| Modell | claude-sonnet-4-20250514 |
| Status | completed |
| Tokens | 856 (Input: 0, Output: 0) |
| Dauer | 84 ms |
| Request-Zeit | Warning: Undefined array key "request_timestamp" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 18 |
| Response-Zeit | - |
Warning: Undefined array key "error_message" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 22
Request
{
"event": "PreToolUse",
"tool_name": "Read",
"tool_input": {
"file_path": "\/opt\/scripts\/pipeline\/quality_test.py",
"offset": 120,
"limit": 100
}
}
Response
{
"tool_response": {
"type": "text",
"file": {
"filePath": "\/opt\/scripts\/pipeline\/quality_test.py",
"content": " try:\n import re\n json_match = re.search(r'\\{[\\s\\S]*\\}', result[\"response\"])\n if json_match:\n data = json.loads(json_match.group())\n entities = data.get(\"entities\", [])\n except:\n pass\n\n result[\"entities\"] = entities\n result[\"entity_count\"] = len(entities)\n return result\n\n\ndef classify_taxonomy(text, model_name, model_id, client=None):\n \"\"\"Classify text into taxonomy categories.\"\"\"\n prompt = f\"\"\"Klassifiziere den folgenden Text in passende Kategorien.\n\nWähle aus diesen Hauptkategorien:\n- Methoden (Therapiemethoden, Coaching-Techniken)\n- Theorie (Konzepte, Modelle, Grundlagen)\n- Praxis (Anwendung, Fallbeispiele, Übungen)\n- Organisation (Strukturen, Prozesse, Rollen)\n- Kommunikation (Gesprächsführung, Interaktion)\n- Entwicklung (Persönliche Entwicklung, Veränderung)\n- Teamarbeit (Teamdynamik, Zusammenarbeit)\n\nAntworte NUR im JSON-Format:\n{{\"categories\": [\"...\", \"...\"], \"confidence\": 0.0-1.0, \"reasoning\": \"kurze Begründung\"}}\n\nText:\n{text[:2500]}\n\"\"\"\n\n if model_name == \"anthropic\":\n result = run_anthropic(client, prompt, model_id)\n else:\n result = run_ollama(model_id, prompt)\n\n # Parse JSON\n categories = []\n confidence = 0\n reasoning = \"\"\n if result[\"success\"]:\n try:\n import re\n json_match = re.search(r'\\{[\\s\\S]*\\}', result[\"response\"])\n if json_match:\n data = json.loads(json_match.group())\n categories = data.get(\"categories\", [])\n confidence = data.get(\"confidence\", 0)\n reasoning = data.get(\"reasoning\", \"\")\n except:\n pass\n\n result[\"categories\"] = categories\n result[\"confidence\"] = confidence\n result[\"reasoning\"] = reasoning\n return result\n\n\ndef generate_questions(text, model_name, model_id, client=None):\n \"\"\"Generate quiz questions from text.\"\"\"\n prompt = f\"\"\"Erstelle 3 Verständnisfragen zu folgendem Lerntext.\nDie Fragen sollen das Verständnis der Kernkonzepte prüfen.\n\nAntworte NUR im JSON-Format:\n{{\"questions\": [\n {{\"question\": \"...\", \"answer\": \"...\", \"difficulty\": \"leicht|mittel|schwer\"}}\n]}}\n\nText:\n{text[:2500]}\n\"\"\"\n\n if model_name == \"anthropic\":\n result = run_anthropic(client, prompt, model_id)\n else:\n result = run_ollama(model_id, prompt)\n\n # Parse JSON\n questions = []\n if result[\"success\"]:\n try:\n import re\n json_match = re.search(r'\\{[\\s\\S]*\\}', result[\"response\"])\n if json_match:\n data = json.loads(json_match.group())\n questions = data.get(\"questions\", [])\n except:\n pass\n\n result[\"questions\"] = questions\n result[\"question_count\"] = len(questions)\n return result\n\n\ndef run_quality_test(document_id):\n \"\"\"Run full quality comparison test.\"\"\"\n db.connect()",
"numLines": 100,
"startLine": 120,
"totalLines": 349
}
}
}