Protokoll #4081
| ID | 4081 |
|---|---|
| Zeitstempel | 2025-12-22 09:08:09.658134 |
| Client | root |
| IP | Warning: Undefined array key "request_ip" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 Deprecated: htmlspecialchars(): Passing null to parameter #1 ($string) of type string is deprecated in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 13 |
| Modell | claude-sonnet-4-20250514 |
| Status | completed |
| Tokens | 4,475 (Input: 0, Output: 0) |
| Dauer | 132 ms |
| Request-Zeit | Warning: Undefined array key "request_timestamp" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 18 |
| Response-Zeit | - |
Warning: Undefined array key "error_message" in /var/www/dev.campus.systemische-tools.de/src/View/protokoll/show.php on line 22
Request
{
"event": "PreToolUse",
"tool_name": "mcp__mcp-docs__docs_create",
"tool_input": {
"title": "Import Pipeline",
"slug": "import",
"parent_id": 87,
"sort_order": 1,
"status": "published",
"description": "Planung und Analyse des Import-Prozesses",
"content": "<h2>Import Pipeline - Planungsdokument<\/h2>\n\n<h3>1. Bestehendes System (IST-Analyse)<\/h3>\n\n<h4>1.1 Python-Skripte unter \/opt\/scripts\/pipeline\/<\/h4>\n<table>\n<tr><th>Datei<\/th><th>Funktion<\/th><th>Kernlogik<\/th><\/tr>\n<tr><td>pipeline.py<\/td><td>Orchestrator<\/td><td>CLI mit scan, process, embed, all, file, status<\/td><\/tr>\n<tr><td>config.py<\/td><td>Konfiguration<\/td><td>Hardcoded Pfade, Modelle, Limits<\/td><\/tr>\n<tr><td>detect.py<\/td><td>Datei-Erkennung<\/td><td>Scan Nextcloud, Hash-Vergleich, Queue<\/td><\/tr>\n<tr><td>extract.py<\/td><td>Text-Extraktion<\/td><td>PDF (OCR), DOCX, PPTX, MD, TXT<\/td><\/tr>\n<tr><td>chunk.py<\/td><td>Chunking<\/td><td>Semantisch nach Typ, Heading-Pfad<\/td><\/tr>\n<tr><td>embed.py<\/td><td>Embedding<\/td><td>Ollama → Qdrant<\/td><\/tr>\n<tr><td>analyze.py<\/td><td>Semantische Analyse<\/td><td>Entitäten, Relationen, Taxonomie<\/td><\/tr>\n<tr><td>db.py<\/td><td>Datenbank-Wrapper<\/td><td>CRUD für documents, chunks, queue<\/td><\/tr>\n<\/table>\n\n<h4>1.2 Datenfluss<\/h4>\n<pre>\nNextcloud (Files)\n ↓\n [detect.py] Scan + Hash\n ↓\n documents (DB) status=pending\n ↓\n [extract.py] PDF\/DOCX\/... → Text\n ↓\n [chunk.py] Semantisches Chunking\n ↓\n chunks (DB) + heading_path, metadata\n ↓\n [embed.py] Ollama mxbai-embed-large\n ↓\n Qdrant (Vektoren) + chunks.qdrant_id\n ↓\n [analyze.py] Entity\/Relation\/Taxonomy\n ↓\n entities, entity_relations, chunk_entities,\n chunk_taxonomy, chunk_semantics (DB)\n<\/pre>\n\n<h4>1.3 Aktuelle Konfiguration (config.py)<\/h4>\n<table>\n<tr><th>Parameter<\/th><th>Wert<\/th><\/tr>\n<tr><td>NEXTCLOUD_PATH<\/td><td>\/var\/www\/nextcloud\/data\/root\/files\/Documents<\/td><\/tr>\n<tr><td>SUPPORTED_EXTENSIONS<\/td><td>.pdf, .pptx, .docx, .md, .txt<\/td><\/tr>\n<tr><td>QDRANT_HOST<\/td><td>localhost:6333<\/td><\/tr>\n<tr><td>QDRANT_COLLECTIONS<\/td><td>documents, mail, entities<\/td><\/tr>\n<tr><td>OLLAMA_HOST<\/td><td>localhost:11434<\/td><\/tr>\n<tr><td>EMBED_MODEL<\/td><td>mxbai-embed-large (1024 dims)<\/td><\/tr>\n<tr><td>MIN_CHUNK_SIZE<\/td><td>100 Zeichen<\/td><\/tr>\n<tr><td>MAX_CHUNK_SIZE<\/td><td>2000 Zeichen<\/td><\/tr>\n<tr><td>CHUNK_OVERLAP<\/td><td>10%<\/td><\/tr>\n<\/table>\n\n<h4>1.4 Datenbank-Struktur (ki_content)<\/h4>\n\n<h5>documents (2 Rows)<\/h5>\n<pre>\nid INT PK AUTO\nsource_path VARCHAR(500)\nfolder_path VARCHAR(500)\nfilename VARCHAR(255)\nmime_type VARCHAR(100)\nfile_hash VARCHAR(64) - SHA256 für Änderungserkennung\nfile_size INT\nlanguage VARCHAR(10) DEFAULT 'de'\nimported_at DATETIME\nprocessed_at DATETIME\nstatus ENUM('pending','processing','done','error')\nerror_message TEXT\n<\/pre>\n\n<h5>chunks (6 Rows)<\/h5>\n<pre>\nid INT PK AUTO\ndocument_id INT FK\nchunk_index INT\ncontent TEXT\ntoken_count INT\nheading_path JSON - [\"H1\", \"H2\", ...]\nmetadata JSON\nqdrant_id VARCHAR(36) - UUID in Qdrant\ncreated_at DATETIME\n<\/pre>\n\n<h5>entities (49 Rows)<\/h5>\n<pre>\nid INT PK AUTO\nname VARCHAR(255)\ntype ENUM('PERSON','ORGANIZATION','LOCATION','CONCEPT','METHOD','TOOL','EVENT','OTHER')\ndescription TEXT\ncanonical_name VARCHAR(255) - Deduplizierung\ncreated_at, updated_at DATETIME\n<\/pre>\n\n<h5>entity_relations (47 Rows)<\/h5>\n<pre>\nid INT PK AUTO\nsource_entity_id INT FK\ntarget_entity_id INT FK\nrelation_type VARCHAR(100) - z.B. DEVELOPED_BY, RELATED_TO\nstrength FLOAT DEFAULT 1\ncontext TEXT\nchunk_id INT FK - Herkunft\ncreated_at DATETIME\n<\/pre>\n\n<h5>taxonomy_terms (8 Rows)<\/h5>\n<pre>\nid INT PK AUTO\nname VARCHAR(255)\nslug VARCHAR(255) UNIQUE\nparent_id INT FK (self-ref)\ndescription TEXT\ndepth INT DEFAULT 0\npath VARCHAR(1000) - z.B. \"\/Methoden\/Systemisch\"\ncreated_at DATETIME\n<\/pre>\n\n<h5>Verknüpfungstabellen<\/h5>\n<pre>\nchunk_entities: chunk_id, entity_id, relevance_score, mention_count\nchunk_taxonomy: chunk_id, taxonomy_term_id, confidence\nchunk_semantics: chunk_id, summary, keywords, sentiment, topics, analysis_model\n<\/pre>\n\n<h4>1.5 Fehlende Tabellen (im Code vorgesehen)<\/h4>\n<pre>\nprocessing_queue - Existiert NICHT\nprocessing_log - Existiert NICHT\n<\/pre>\n\n<hr>\n\n<h3>2. SOLL-Konzept (GUI)<\/h3>\n\n<h4>2.1 Anforderungen<\/h4>\n<ul>\n<li>Visuelle Darstellung der Pipeline-Schritte<\/li>\n<li>Konfigurierbare Parameter pro Schritt<\/li>\n<li>Unterstützung mehrerer Pipeline-Definitionen<\/li>\n<li>Status-Übersicht für Dokumente<\/li>\n<li>Manuelle Trigger-Möglichkeit<\/li>\n<\/ul>\n\n<h4>2.2 Neue Tabelle: pipeline_configs (ki_content)<\/h4>\n<pre>\nid INT PK AUTO\nname VARCHAR(100) UNIQUE - z.B. \"Standard\", \"Nur-Embedding\"\ndescription TEXT\nis_default BOOLEAN DEFAULT FALSE\nsource_path VARCHAR(500) - Nextcloud-Ordner\nextensions JSON - [\".pdf\", \".docx\", ...]\nsteps JSON - Aktivierte Steps + Reihenfolge\ncreated_at, updated_at DATETIME\n\nBeispiel steps:\n[\n {\"step\": \"detect\", \"enabled\": true, \"order\": 1},\n {\"step\": \"extract\", \"enabled\": true, \"order\": 2, \"config\": {\"ocr\": true}},\n {\"step\": \"chunk\", \"enabled\": true, \"order\": 3, \"config\": {\"min\": 100, \"max\": 2000, \"overlap\": 0.1}},\n {\"step\": \"embed\", \"enabled\": true, \"order\": 4, \"config\": {\"model\": \"mxbai-embed-large\", \"collection\": \"documents\"}},\n {\"step\": \"analyze\", \"enabled\": false, \"order\": 5}\n]\n<\/pre>\n\n<h4>2.3 Neue Tabelle: pipeline_step_configs (ki_content)<\/h4>\n<pre>\nid INT PK AUTO\npipeline_id INT FK\nstep_type ENUM('detect','extract','chunk','embed','analyze')\nconfig JSON - Step-spezifische Einstellungen\nsort_order INT\nenabled BOOLEAN DEFAULT TRUE\ncreated_at, updated_at DATETIME\n<\/pre>\n\n<h4>2.4 Neue Tabelle: pipeline_runs (ki_content)<\/h4>\n<pre>\nid INT PK AUTO\npipeline_id INT FK\nstatus ENUM('pending','running','completed','failed','cancelled')\nstarted_at DATETIME\ncompleted_at DATETIME\ndocuments_processed INT DEFAULT 0\ndocuments_failed INT DEFAULT 0\nerror_log TEXT\ncreated_at DATETIME\n<\/pre>\n\n<h4>2.5 URL-Struktur<\/h4>\n<pre>\n\/content-pipeline - Übersicht aller Pipelines\n\/content-pipeline\/import - Import-Konfiguration (erste Seite)\n\/content-pipeline\/{id} - Pipeline-Detail\n\/content-pipeline\/{id}\/run - Pipeline starten (POST)\n\/content-pipeline\/{id}\/status - Laufender Status\n\/content-pipeline\/new - Neue Pipeline erstellen\n<\/pre>\n\n<h4>2.6 View-Komponenten<\/h4>\n<pre>\n┌─────────────────────────────────────────────────────────┐\n│ Content Pipeline: Standard [Run] │\n├─────────────────────────────────────────────────────────┤\n│ │\n│ ┌──────┐ ┌─────────┐ ┌───────┐ ┌───────┐ ┌────┐│\n│ │Detect│ → │ Extract │ → │ Chunk │ → │ Embed │ → │Anal││\n│ │ ✓ │ │ ✓ │ │ ✓ │ │ ✓ │ │ ✗ ││\n│ └──────┘ └─────────┘ └───────┘ └───────┘ └────┘│\n│ │\n│ Quelle: \/Documents │\n│ Formate: .pdf, .docx, .pptx, .md, .txt │\n│ │\n│ Letzte Ausführung: 2025-12-20 14:30 │\n│ Verarbeitet: 2 Dokumente, 6 Chunks │\n└─────────────────────────────────────────────────────────┘\n<\/pre>\n\n<hr>\n\n<h3>3. Implementierungsplan<\/h3>\n\n<h4>Phase 1: Tabellen + Repository<\/h4>\n<ol>\n<li>DDL für pipeline_configs, pipeline_step_configs, pipeline_runs<\/li>\n<li>Domain\\Repository\\PipelineRepositoryInterface<\/li>\n<li>Infrastructure\\Persistence\\PipelineRepository<\/li>\n<\/ol>\n\n<h4>Phase 2: Controller + Views<\/h4>\n<ol>\n<li>Controller\\ContentPipelineController<\/li>\n<li>View\\content-pipeline\\index.php (Übersicht)<\/li>\n<li>View\\content-pipeline\\show.php (Detail + Steps)<\/li>\n<li>View\\content-pipeline\\form.php (Create\/Edit)<\/li>\n<\/ol>\n\n<h4>Phase 3: Integration Python<\/h4>\n<ol>\n<li>Pipeline-Aufruf via Bash (mit Config-ID)<\/li>\n<li>Status-Polling via AJAX<\/li>\n<li>Log-Streaming<\/li>\n<\/ol>\n\n<h4>Prinzipien<\/h4>\n<ul>\n<li><strong>DRY<\/strong>: Wiederverwendung bestehender Python-Logik<\/li>\n<li><strong>KISS<\/strong>: Minimale neue Tabellen, JSON für flexible Config<\/li>\n<li><strong>SRP<\/strong>: Repository nur für Pipelines, Controller nur für HTTP<\/li>\n<li><strong>YAGNI<\/strong>: Keine Features die nicht gefordert wurden<\/li>\n<\/ul>"
}
}
Response
{
"tool_response": [
{
"type": "text",
"text": "{\n \"success\": true,\n \"doc\": {\n \"id\": 88,\n \"parent_id\": 87,\n \"slug\": \"import\",\n \"path\": \"\/anwendungen\/content-pipeline\/import\",\n \"title\": \"Import Pipeline\",\n \"description\": \"Planung und Analyse des Import-Prozesses\",\n \"content\": \"<h2>Import Pipeline - Planungsdokument<\/h2>\\n\\n<h3>1. Bestehendes System (IST-Analyse)<\/h3>\\n\\n<h4>1.1 Python-Skripte unter \/opt\/scripts\/pipeline\/<\/h4>\\n<table>\\n<tr><th>Datei<\/th><th>Funktion<\/th><th>Kernlogik<\/th><\/tr>\\n<tr><td>pipeline.py<\/td><td>Orchestrator<\/td><td>CLI mit scan, process, embed, all, file, status<\/td><\/tr>\\n<tr><td>config.py<\/td><td>Konfiguration<\/td><td>Hardcoded Pfade, Modelle, Limits<\/td><\/tr>\\n<tr><td>detect.py<\/td><td>Datei-Erkennung<\/td><td>Scan Nextcloud, Hash-Vergleich, Queue<\/td><\/tr>\\n<tr><td>extract.py<\/td><td>Text-Extraktion<\/td><td>PDF (OCR), DOCX, PPTX, MD, TXT<\/td><\/tr>\\n<tr><td>chunk.py<\/td><td>Chunking<\/td><td>Semantisch nach Typ, Heading-Pfad<\/td><\/tr>\\n<tr><td>embed.py<\/td><td>Embedding<\/td><td>Ollama → Qdrant<\/td><\/tr>\\n<tr><td>analyze.py<\/td><td>Semantische Analyse<\/td><td>Entitäten, Relationen, Taxonomie<\/td><\/tr>\\n<tr><td>db.py<\/td><td>Datenbank-Wrapper<\/td><td>CRUD für documents, chunks, queue<\/td><\/tr>\\n<\/table>\\n\\n<h4>1.2 Datenfluss<\/h4>\\n<pre>\\nNextcloud (Files)\\n ↓\\n [detect.py] Scan + Hash\\n ↓\\n documents (DB) status=pending\\n ↓\\n [extract.py] PDF\/DOCX\/... → Text\\n ↓\\n [chunk.py] Semantisches Chunking\\n ↓\\n chunks (DB) + heading_path, metadata\\n ↓\\n [embed.py] Ollama mxbai-embed-large\\n ↓\\n Qdrant (Vektoren) + chunks.qdrant_id\\n ↓\\n [analyze.py] Entity\/Relation\/Taxonomy\\n ↓\\n entities, entity_relations, chunk_entities,\\n chunk_taxonomy, chunk_semantics (DB)\\n<\/pre>\\n\\n<h4>1.3 Aktuelle Konfiguration (config.py)<\/h4>\\n<table>\\n<tr><th>Parameter<\/th><th>Wert<\/th><\/tr>\\n<tr><td>NEXTCLOUD_PATH<\/td><td>\/var\/www\/nextcloud\/data\/root\/files\/Documents<\/td><\/tr>\\n<tr><td>SUPPORTED_EXTENSIONS<\/td><td>.pdf, .pptx, .docx, .md, .txt<\/td><\/tr>\\n<tr><td>QDRANT_HOST<\/td><td>localhost:6333<\/td><\/tr>\\n<tr><td>QDRANT_COLLECTIONS<\/td><td>documents, mail, entities<\/td><\/tr>\\n<tr><td>OLLAMA_HOST<\/td><td>localhost:11434<\/td><\/tr>\\n<tr><td>EMBED_MODEL<\/td><td>mxbai-embed-large (1024 dims)<\/td><\/tr>\\n<tr><td>MIN_CHUNK_SIZE<\/td><td>100 Zeichen<\/td><\/tr>\\n<tr><td>MAX_CHUNK_SIZE<\/td><td>2000 Zeichen<\/td><\/tr>\\n<tr><td>CHUNK_OVERLAP<\/td><td>10%<\/td><\/tr>\\n<\/table>\\n\\n<h4>1.4 Datenbank-Struktur (ki_content)<\/h4>\\n\\n<h5>documents (2 Rows)<\/h5>\\n<pre>\\nid INT PK AUTO\\nsource_path VARCHAR(500)\\nfolder_path VARCHAR(500)\\nfilename VARCHAR(255)\\nmime_type VARCHAR(100)\\nfile_hash VARCHAR(64) - SHA256 für Änderungserkennung\\nfile_size INT\\nlanguage VARCHAR(10) DEFAULT 'de'\\nimported_at DATETIME\\nprocessed_at DATETIME\\nstatus ENUM('pending','processing','done','error')\\nerror_message TEXT\\n<\/pre>\\n\\n<h5>chunks (6 Rows)<\/h5>\\n<pre>\\nid INT PK AUTO\\ndocument_id INT FK\\nchunk_index INT\\ncontent TEXT\\ntoken_count INT\\nheading_path JSON - [\\\"H1\\\", \\\"H2\\\", ...]\\nmetadata JSON\\nqdrant_id VARCHAR(36) - UUID in Qdrant\\ncreated_at DATETIME\\n<\/pre>\\n\\n<h5>entities (49 Rows)<\/h5>\\n<pre>\\nid INT PK AUTO\\nname VARCHAR(255)\\ntype ENUM('PERSON','ORGANIZATION','LOCATION','CONCEPT','METHOD','TOOL','EVENT','OTHER')\\ndescription TEXT\\ncanonical_name VARCHAR(255) - Deduplizierung\\ncreated_at, updated_at DATETIME\\n<\/pre>\\n\\n<h5>entity_relations (47 Rows)<\/h5>\\n<pre>\\nid INT PK AUTO\\nsource_entity_id INT FK\\ntarget_entity_id INT FK\\nrelation_type VARCHAR(100) - z.B. DEVELOPED_BY, RELATED_TO\\nstrength FLOAT DEFAULT 1\\ncontext TEXT\\nchunk_id INT FK - Herkunft\\ncreated_at DATETIME\\n<\/pre>\\n\\n<h5>taxonomy_terms (8 Rows)<\/h5>\\n<pre>\\nid INT PK AUTO\\nname VARCHAR(255)\\nslug VARCHAR(255) UNIQUE\\nparent_id INT FK (self-ref)\\ndescription TEXT\\ndepth INT DEFAULT 0\\npath VARCHAR(1000) - z.B. \\\"\/Methoden\/Systemisch\\\"\\ncreated_at DATETIME\\n<\/pre>\\n\\n<h5>Verknüpfungstabellen<\/h5>\\n<pre>\\nchunk_entities: chunk_id, entity_id, relevance_score, mention_count\\nchunk_taxonomy: chunk_id, taxonomy_term_id, confidence\\nchunk_semantics: chunk_id, summary, keywords, sentiment, topics, analysis_model\\n<\/pre>\\n\\n<h4>1.5 Fehlende Tabellen (im Code vorgesehen)<\/h4>\\n<pre>\\nprocessing_queue - Existiert NICHT\\nprocessing_log - Existiert NICHT\\n<\/pre>\\n\\n<hr>\\n\\n<h3>2. SOLL-Konzept (GUI)<\/h3>\\n\\n<h4>2.1 Anforderungen<\/h4>\\n<ul>\\n<li>Visuelle Darstellung der Pipeline-Schritte<\/li>\\n<li>Konfigurierbare Parameter pro Schritt<\/li>\\n<li>Unterstützung mehrerer Pipeline-Definitionen<\/li>\\n<li>Status-Übersicht für Dokumente<\/li>\\n<li>Manuelle Trigger-Möglichkeit<\/li>\\n<\/ul>\\n\\n<h4>2.2 Neue Tabelle: pipeline_configs (ki_content)<\/h4>\\n<pre>\\nid INT PK AUTO\\nname VARCHAR(100) UNIQUE - z.B. \\\"Standard\\\", \\\"Nur-Embedding\\\"\\ndescription TEXT\\nis_default BOOLEAN DEFAULT FALSE\\nsource_path VARCHAR(500) - Nextcloud-Ordner\\nextensions JSON - [\\\".pdf\\\", \\\".docx\\\", ...]\\nsteps JSON - Aktivierte Steps + Reihenfolge\\ncreated_at, updated_at DATETIME\\n\\nBeispiel steps:\\n[\\n {\\\"step\\\": \\\"detect\\\", \\\"enabled\\\": true, \\\"order\\\": 1},\\n {\\\"step\\\": \\\"extract\\\", \\\"enabled\\\": true, \\\"order\\\": 2, \\\"config\\\": {\\\"ocr\\\": true}},\\n {\\\"step\\\": \\\"chunk\\\", \\\"enabled\\\": true, \\\"order\\\": 3, \\\"config\\\": {\\\"min\\\": 100, \\\"max\\\": 2000, \\\"overlap\\\": 0.1}},\\n {\\\"step\\\": \\\"embed\\\", \\\"enabled\\\": true, \\\"order\\\": 4, \\\"config\\\": {\\\"model\\\": \\\"mxbai-embed-large\\\", \\\"collection\\\": \\\"documents\\\"}},\\n {\\\"step\\\": \\\"analyze\\\", \\\"enabled\\\": false, \\\"order\\\": 5}\\n]\\n<\/pre>\\n\\n<h4>2.3 Neue Tabelle: pipeline_step_configs (ki_content)<\/h4>\\n<pre>\\nid INT PK AUTO\\npipeline_id INT FK\\nstep_type ENUM('detect','extract','chunk','embed','analyze')\\nconfig JSON - Step-spezifische Einstellungen\\nsort_order INT\\nenabled BOOLEAN DEFAULT TRUE\\ncreated_at, updated_at DATETIME\\n<\/pre>\\n\\n<h4>2.4 Neue Tabelle: pipeline_runs (ki_content)<\/h4>\\n<pre>\\nid INT PK AUTO\\npipeline_id INT FK\\nstatus ENUM('pending','running','completed','failed','cancelled')\\nstarted_at DATETIME\\ncompleted_at DATETIME\\ndocuments_processed INT DEFAULT 0\\ndocuments_failed INT DEFAULT 0\\nerror_log TEXT\\ncreated_at DATETIME\\n<\/pre>\\n\\n<h4>2.5 URL-Struktur<\/h4>\\n<pre>\\n\/content-pipeline - Übersicht aller Pipelines\\n\/content-pipeline\/import - Import-Konfiguration (erste Seite)\\n\/content-pipeline\/{id} - Pipeline-Detail\\n\/content-pipeline\/{id}\/run - Pipeline starten (POST)\\n\/content-pipeline\/{id}\/status - Laufender Status\\n\/content-pipeline\/new - Neue Pipeline erstellen\\n<\/pre>\\n\\n<h4>2.6 View-Komponenten<\/h4>\\n<pre>\\n┌─────────────────────────────────────────────────────────┐\\n│ Content Pipeline: Standard [Run] │\\n├─────────────────────────────────────────────────────────┤\\n│ │\\n│ ┌──────┐ ┌─────────┐ ┌───────┐ ┌───────┐ ┌────┐│\\n│ │Detect│ → │ Extract │ → │ Chunk │ → │ Embed │ → │Anal││\\n│ │ ✓ │ │ ✓ │ │ ✓ │ │ ✓ │ │ ✗ ││\\n│ └──────┘ └─────────┘ └───────┘ └───────┘ └────┘│\\n│ │\\n│ Quelle: \/Documents │\\n│ Formate: .pdf, .docx, .pptx, .md, .txt │\\n│ │\\n│ Letzte Ausführung: 2025-12-20 14:30 │\\n│ Verarbeitet: 2 Dokumente, 6 Chunks │\\n└─────────────────────────────────────────────────────────┘\\n<\/pre>\\n\\n<hr>\\n\\n<h3>3. Implementierungsplan<\/h3>\\n\\n<h4>Phase 1: Tabellen + Repository<\/h4>\\n<ol>\\n<li>DDL für pipeline_configs, pipeline_step_configs, pipeline_runs<\/li>\\n<li>Domain\\\\Repository\\\\PipelineRepositoryInterface<\/li>\\n<li>Infrastructure\\\\Persistence\\\\PipelineRepository<\/li>\\n<\/ol>\\n\\n<h4>Phase 2: Controller + Views<\/h4>\\n<ol>\\n<li>Controller\\\\ContentPipelineController<\/li>\\n<li>View\\\\content-pipeline\\\\index.php (Übersicht)<\/li>\\n<li>View\\\\content-pipeline\\\\show.php (Detail + Steps)<\/li>\\n<li>View\\\\content-pipeline\\\\form.php (Create\/Edit)<\/li>\\n<\/ol>\\n\\n<h4>Phase 3: Integration Python<\/h4>\\n<ol>\\n<li>Pipeline-Aufruf via Bash (mit Config-ID)<\/li>\\n<li>Status-Polling via AJAX<\/li>\\n<li>Log-Streaming<\/li>\\n<\/ol>\\n\\n<h4>Prinzipien<\/h4>\\n<ul>\\n<li><strong>DRY<\/strong>: Wiederverwendung bestehender Python-Logik<\/li>\\n<li><strong>KISS<\/strong>: Minimale neue Tabellen, JSON für flexible Config<\/li>\\n<li><strong>SRP<\/strong>: Repository nur für Pipelines, Controller nur für HTTP<\/li>\\n<li><strong>YAGNI<\/strong>: Keine Features die nicht gefordert wurden<\/li>\\n<\/ul>\",\n \"status\": \"published\",\n \"sort_order\": 1,\n \"depth\": 2,\n \"created_at\": \"2025-12-22T09:08:09\",\n \"updated_at\": \"2025-12-22T09:08:09\"\n },\n \"message\": \"Dokument 'Import Pipeline' erstellt mit ID 88\"\n}"
}
]
}